Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion

[...]the relationship between the original PAN image and its degraded version is utilized to reconstruct the high-resolution MS image; in addition, an intensity component of MS image, which is obtained using an adaptive intensity-hue-saturation (AIHS), is reconstructed by utilizing the aforementione...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telkomnika 2024-08, Vol.22 (4), p.985-994
Hauptverfasser: Smadi, Ahmad Al, Abugabah, Ahed, Alsmadi, Mutasem Khlail, Alsanabani, Ala, Mehmood, Atif, Al-Smadi, Ahmad Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 4
container_start_page 985
container_title Telkomnika
container_volume 22
creator Smadi, Ahmad Al
Abugabah, Ahed
Alsmadi, Mutasem Khlail
Alsanabani, Ala
Mehmood, Atif
Al-Smadi, Ahmad Mohammad
description [...]the relationship between the original PAN image and its degraded version is utilized to reconstruct the high-resolution MS image; in addition, an intensity component of MS image, which is obtained using an adaptive intensity-hue-saturation (AIHS), is reconstructed by utilizing the aforementioned relationship. A wide variety of pansharpening studies have been introduced in the literature, which can be grouped into three groups [9]: i) component substitution (CS) [10], [11]; ii) multiresolution analysis (MRA) [12], [13]; and iii) sparse representation (SR) [14], [15] based methods. The MRA based-methods such as indusion [21], wavelet transform [22], and generalized Laplacian pyramid (MTF-GLP) approach [23] leverages the detailed map by computing the variance between the PAN image and its low-resolution counterpart via PAN image decomposition. CAEs CAEs are considered unsupervised learning of convolutional filters. [...]any input would be used to extract features once a CAE has been learned [34].
doi_str_mv 10.12928/telkomnika.v22i4.25856
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092408930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092408930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760-ff96817f8b9187f206272c150d603270ef4ee260c4a7bb89d3ee9e696746936f3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gwGft2aT3Vx8K6VeoKAPfQ_pbmLT7m5iktbLrzeuggPDzMM5c5gPgOsSzUssML9Nuju4frAHNT9hbKs5rnlNz8AEE4QLgQU5B5OSClLkRpdgFuMe5WII14JPQPeihrhTwevBDq_w3aYd7I9dssVysbqDtveqSdAZ6FVqdjDaLw3V0EJ30qFT3v-YvP3QXYRugNHrJgXVjZKYLTbvrY3JhWTdcAUujOqinv3NKdjcrzbLx2L9_PC0XKyLhlFUGCMoL5nhW1FyZjCimOGmrFFLEcEMaVNpjSlqKsW2Wy5aorXQVFBW5R-pIVNw83vWB_d21DHJvTuGISdKggSuEM8osor9qprgYgzaSB9sr8KnLJEc4cp_uHKEK0e45BtXx3H1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092408930</pqid></control><display><type>article</type><title>Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smadi, Ahmad Al ; Abugabah, Ahed ; Alsmadi, Mutasem Khlail ; Alsanabani, Ala ; Mehmood, Atif ; Al-Smadi, Ahmad Mohammad</creator><creatorcontrib>Smadi, Ahmad Al ; Abugabah, Ahed ; Alsmadi, Mutasem Khlail ; Alsanabani, Ala ; Mehmood, Atif ; Al-Smadi, Ahmad Mohammad</creatorcontrib><description>[...]the relationship between the original PAN image and its degraded version is utilized to reconstruct the high-resolution MS image; in addition, an intensity component of MS image, which is obtained using an adaptive intensity-hue-saturation (AIHS), is reconstructed by utilizing the aforementioned relationship. A wide variety of pansharpening studies have been introduced in the literature, which can be grouped into three groups [9]: i) component substitution (CS) [10], [11]; ii) multiresolution analysis (MRA) [12], [13]; and iii) sparse representation (SR) [14], [15] based methods. The MRA based-methods such as indusion [21], wavelet transform [22], and generalized Laplacian pyramid (MTF-GLP) approach [23] leverages the detailed map by computing the variance between the PAN image and its low-resolution counterpart via PAN image decomposition. CAEs CAEs are considered unsupervised learning of convolutional filters. [...]any input would be used to extract features once a CAE has been learned [34].</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v22i4.25856</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Datasets ; Decomposition ; Deep learning ; Dictionaries ; Image degradation ; Image filters ; Image reconstruction ; Image resolution ; Methods ; Multiresolution analysis ; Neural networks ; Remote sensing ; Satellites ; Saturation (color) ; Unsupervised learning ; Wavelet transforms</subject><ispartof>Telkomnika, 2024-08, Vol.22 (4), p.985-994</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Smadi, Ahmad Al</creatorcontrib><creatorcontrib>Abugabah, Ahed</creatorcontrib><creatorcontrib>Alsmadi, Mutasem Khlail</creatorcontrib><creatorcontrib>Alsanabani, Ala</creatorcontrib><creatorcontrib>Mehmood, Atif</creatorcontrib><creatorcontrib>Al-Smadi, Ahmad Mohammad</creatorcontrib><title>Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion</title><title>Telkomnika</title><description>[...]the relationship between the original PAN image and its degraded version is utilized to reconstruct the high-resolution MS image; in addition, an intensity component of MS image, which is obtained using an adaptive intensity-hue-saturation (AIHS), is reconstructed by utilizing the aforementioned relationship. A wide variety of pansharpening studies have been introduced in the literature, which can be grouped into three groups [9]: i) component substitution (CS) [10], [11]; ii) multiresolution analysis (MRA) [12], [13]; and iii) sparse representation (SR) [14], [15] based methods. The MRA based-methods such as indusion [21], wavelet transform [22], and generalized Laplacian pyramid (MTF-GLP) approach [23] leverages the detailed map by computing the variance between the PAN image and its low-resolution counterpart via PAN image decomposition. CAEs CAEs are considered unsupervised learning of convolutional filters. [...]any input would be used to extract features once a CAE has been learned [34].</description><subject>Datasets</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Image degradation</subject><subject>Image filters</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Methods</subject><subject>Multiresolution analysis</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Saturation (color)</subject><subject>Unsupervised learning</subject><subject>Wavelet transforms</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gwGft2aT3Vx8K6VeoKAPfQ_pbmLT7m5iktbLrzeuggPDzMM5c5gPgOsSzUssML9Nuju4frAHNT9hbKs5rnlNz8AEE4QLgQU5B5OSClLkRpdgFuMe5WII14JPQPeihrhTwevBDq_w3aYd7I9dssVysbqDtveqSdAZ6FVqdjDaLw3V0EJ30qFT3v-YvP3QXYRugNHrJgXVjZKYLTbvrY3JhWTdcAUujOqinv3NKdjcrzbLx2L9_PC0XKyLhlFUGCMoL5nhW1FyZjCimOGmrFFLEcEMaVNpjSlqKsW2Wy5aorXQVFBW5R-pIVNw83vWB_d21DHJvTuGISdKggSuEM8osor9qprgYgzaSB9sr8KnLJEc4cp_uHKEK0e45BtXx3H1</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Smadi, Ahmad Al</creator><creator>Abugabah, Ahed</creator><creator>Alsmadi, Mutasem Khlail</creator><creator>Alsanabani, Ala</creator><creator>Mehmood, Atif</creator><creator>Al-Smadi, Ahmad Mohammad</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion</title><author>Smadi, Ahmad Al ; Abugabah, Ahed ; Alsmadi, Mutasem Khlail ; Alsanabani, Ala ; Mehmood, Atif ; Al-Smadi, Ahmad Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760-ff96817f8b9187f206272c150d603270ef4ee260c4a7bb89d3ee9e696746936f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Image degradation</topic><topic>Image filters</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Methods</topic><topic>Multiresolution analysis</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Saturation (color)</topic><topic>Unsupervised learning</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smadi, Ahmad Al</creatorcontrib><creatorcontrib>Abugabah, Ahed</creatorcontrib><creatorcontrib>Alsmadi, Mutasem Khlail</creatorcontrib><creatorcontrib>Alsanabani, Ala</creatorcontrib><creatorcontrib>Mehmood, Atif</creatorcontrib><creatorcontrib>Al-Smadi, Ahmad Mohammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smadi, Ahmad Al</au><au>Abugabah, Ahed</au><au>Alsmadi, Mutasem Khlail</au><au>Alsanabani, Ala</au><au>Mehmood, Atif</au><au>Al-Smadi, Ahmad Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion</atitle><jtitle>Telkomnika</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>22</volume><issue>4</issue><spage>985</spage><epage>994</epage><pages>985-994</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>[...]the relationship between the original PAN image and its degraded version is utilized to reconstruct the high-resolution MS image; in addition, an intensity component of MS image, which is obtained using an adaptive intensity-hue-saturation (AIHS), is reconstructed by utilizing the aforementioned relationship. A wide variety of pansharpening studies have been introduced in the literature, which can be grouped into three groups [9]: i) component substitution (CS) [10], [11]; ii) multiresolution analysis (MRA) [12], [13]; and iii) sparse representation (SR) [14], [15] based methods. The MRA based-methods such as indusion [21], wavelet transform [22], and generalized Laplacian pyramid (MTF-GLP) approach [23] leverages the detailed map by computing the variance between the PAN image and its low-resolution counterpart via PAN image decomposition. CAEs CAEs are considered unsupervised learning of convolutional filters. [...]any input would be used to extract features once a CAE has been learned [34].</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v22i4.25856</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1693-6930
ispartof Telkomnika, 2024-08, Vol.22 (4), p.985-994
issn 1693-6930
2302-9293
language eng
recordid cdi_proquest_journals_3092408930
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Datasets
Decomposition
Deep learning
Dictionaries
Image degradation
Image filters
Image reconstruction
Image resolution
Methods
Multiresolution analysis
Neural networks
Remote sensing
Satellites
Saturation (color)
Unsupervised learning
Wavelet transforms
title Pansharpening with multi-CAE: impact of patch size and overlapping pixels on spectral and spatial distortion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pansharpening%20with%20multi-CAE:%20impact%20of%20patch%20size%20and%20overlapping%20pixels%20on%20spectral%20and%20spatial%20distortion&rft.jtitle=Telkomnika&rft.au=Smadi,%20Ahmad%20Al&rft.date=2024-08-01&rft.volume=22&rft.issue=4&rft.spage=985&rft.epage=994&rft.pages=985-994&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v22i4.25856&rft_dat=%3Cproquest_cross%3E3092408930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092408930&rft_id=info:pmid/&rfr_iscdi=true