Underwater image enhancement based on weighted guided filter image fusion
An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fus...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2024-10, Vol.30 (5), Article 240 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Multimedia systems |
container_volume | 30 |
creator | Xiang, Dan Wang, Huihua Zhou, Zebin Zhao, Hao Gao, Pan Zhang, Jinwen Shan, Chun |
description | An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality of our approach. |
doi_str_mv | 10.1007/s00530-024-01432-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092346975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092346975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b1299d31f0ab1484951a7b6afede347b8c56f53a52eca62c9802e9d849381f8e3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYPxLHR1TxqFSJCz1bTrJOU7VOsRNV_HtMg9Qbp5nDfLOrIeSewSMDUE8RIBdAgUsKTApO1QWZnQwrS35JZqAlp1IX_JrcxLgFYKoQMCPLtW8wHO2AIev2tsUM_cb6Gvfoh6yyEZus99kRu3YzJN-OXZPEdbsz4cbY9f6WXDm7i3j3p3Oyfn35XLzT1cfbcvG8ojUHGGjFuNaNYA5sxWQpdc6sqgrrsEEhVVXWeeFyYXOOtS14rUvgqJsUFCVzJYo5eZh6D6H_GjEOZtuPwaeTRoDmQhZa5SnFp1Qd-hgDOnMI6dvwbRiY38nMNJlJk5nTZEYlSExQTGHfYjhX_0P9AHg5blA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092346975</pqid></control><display><type>article</type><title>Underwater image enhancement based on weighted guided filter image fusion</title><source>SpringerLink Journals</source><creator>Xiang, Dan ; Wang, Huihua ; Zhou, Zebin ; Zhao, Hao ; Gao, Pan ; Zhang, Jinwen ; Shan, Chun</creator><creatorcontrib>Xiang, Dan ; Wang, Huihua ; Zhou, Zebin ; Zhao, Hao ; Gao, Pan ; Zhang, Jinwen ; Shan, Chun</creatorcontrib><description>An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality of our approach.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-024-01432-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Computer vision ; Cryptology ; Data Storage Representation ; Image contrast ; Image enhancement ; Image filters ; Image quality ; Multimedia Information Systems ; Operating Systems ; Regular Paper ; Saturation (color) ; Underwater</subject><ispartof>Multimedia systems, 2024-10, Vol.30 (5), Article 240</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b1299d31f0ab1484951a7b6afede347b8c56f53a52eca62c9802e9d849381f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-024-01432-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-024-01432-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xiang, Dan</creatorcontrib><creatorcontrib>Wang, Huihua</creatorcontrib><creatorcontrib>Zhou, Zebin</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zhang, Jinwen</creatorcontrib><creatorcontrib>Shan, Chun</creatorcontrib><title>Underwater image enhancement based on weighted guided filter image fusion</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality of our approach.</description><subject>Algorithms</subject><subject>Color</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Image quality</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Regular Paper</subject><subject>Saturation (color)</subject><subject>Underwater</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYPxLHR1TxqFSJCz1bTrJOU7VOsRNV_HtMg9Qbp5nDfLOrIeSewSMDUE8RIBdAgUsKTApO1QWZnQwrS35JZqAlp1IX_JrcxLgFYKoQMCPLtW8wHO2AIev2tsUM_cb6Gvfoh6yyEZus99kRu3YzJN-OXZPEdbsz4cbY9f6WXDm7i3j3p3Oyfn35XLzT1cfbcvG8ojUHGGjFuNaNYA5sxWQpdc6sqgrrsEEhVVXWeeFyYXOOtS14rUvgqJsUFCVzJYo5eZh6D6H_GjEOZtuPwaeTRoDmQhZa5SnFp1Qd-hgDOnMI6dvwbRiY38nMNJlJk5nTZEYlSExQTGHfYjhX_0P9AHg5blA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Xiang, Dan</creator><creator>Wang, Huihua</creator><creator>Zhou, Zebin</creator><creator>Zhao, Hao</creator><creator>Gao, Pan</creator><creator>Zhang, Jinwen</creator><creator>Shan, Chun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Underwater image enhancement based on weighted guided filter image fusion</title><author>Xiang, Dan ; Wang, Huihua ; Zhou, Zebin ; Zhao, Hao ; Gao, Pan ; Zhang, Jinwen ; Shan, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b1299d31f0ab1484951a7b6afede347b8c56f53a52eca62c9802e9d849381f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Image quality</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Regular Paper</topic><topic>Saturation (color)</topic><topic>Underwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Dan</creatorcontrib><creatorcontrib>Wang, Huihua</creatorcontrib><creatorcontrib>Zhou, Zebin</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zhang, Jinwen</creatorcontrib><creatorcontrib>Shan, Chun</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Dan</au><au>Wang, Huihua</au><au>Zhou, Zebin</au><au>Zhao, Hao</au><au>Gao, Pan</au><au>Zhang, Jinwen</au><au>Shan, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater image enhancement based on weighted guided filter image fusion</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><artnum>240</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>An underwater image enhancement technique based on weighted guided filter image fusion is proposed to address challenges, including optical absorption and scattering, color distortion, and uneven illumination. The method consists of three stages: color correction, local contrast enhancement, and fusion algorithm methods. In terms of color correction, basic correction is achieved through channel compensation and remapping, with saturation adjusted based on histogram distribution to enhance visual richness. For local contrast enhancement, the approach involves box filtering and a variational model to improve image saturation. Finally, the method utilizes weighted guided filter image fusion to achieve high visual quality underwater images. Additionally, our method outperforms eight state-of-the-art algorithms in no-reference metrics, demonstrating its effectiveness and innovation. We also conducted application tests and time comparisons to further validate the practicality of our approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-024-01432-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2024-10, Vol.30 (5), Article 240 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_3092346975 |
source | SpringerLink Journals |
subjects | Algorithms Color Computer Communication Networks Computer Graphics Computer Science Computer vision Cryptology Data Storage Representation Image contrast Image enhancement Image filters Image quality Multimedia Information Systems Operating Systems Regular Paper Saturation (color) Underwater |
title | Underwater image enhancement based on weighted guided filter image fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20image%20enhancement%20based%20on%20weighted%20guided%20filter%20image%20fusion&rft.jtitle=Multimedia%20systems&rft.au=Xiang,%20Dan&rft.date=2024-10-01&rft.volume=30&rft.issue=5&rft.artnum=240&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-024-01432-7&rft_dat=%3Cproquest_cross%3E3092346975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092346975&rft_id=info:pmid/&rfr_iscdi=true |