Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes

In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chronic diseases and translational medicine 2019-05, Vol.13 (3), p.140-153
Hauptverfasser: Bu, Lake, Karpovsky, Mark G, Kinsy, Michel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 3
container_start_page 140
container_title Chronic diseases and translational medicine
container_volume 13
creator Bu, Lake
Karpovsky, Mark G
Kinsy, Michel A
description In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlog⁡Q). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.
doi_str_mv 10.1049/iet-cdt.2018.5008
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_3092307089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092307089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYsouK7-AG8Bz10nSdu03nR1VVjwsoK3kKZpN0u3qUnKsv_elMrexMvMMLw38_ii6BbDAkNS3GvlY1n5BQGcL1KA_CyaYZbiOM_w1_lpBnwZXTm3A0izFPJZNDwrp5sOmRpZ1WpRtgo5b6xoFBJdhaTZ94MPu6Pzau_QQfstanWz9Qc1VtRYM_TIK-d116BSOFWhznRxqTthj0hZa2y4Yq2SXpsujJVy19FFLVqnbn77PPpcvWyWb_H64_V9-biOJc0IiYVgspBVXRKcJHVZUJXIFChkhWBJVQBNMUlTJhiVgokih7rKCcsyAWUtkhroPLqb7vbWfA8hI9-ZwXbhJadQEAoM8iKo8KSS1jhnVc17q_chPcfAR7o80OWBLh_p8pFu8DxMnoNu1fF_A18-b8jTCoAQEszxZB5lp0R_P_sBcEKR1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092307089</pqid></control><display><type>article</type><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><source>Wiley Online Library Open Access</source><creator>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</creator><creatorcontrib>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</creatorcontrib><description>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlog⁡Q). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</description><identifier>ISSN: 1751-8601</identifier><identifier>ISSN: 1751-861X</identifier><identifier>ISSN: 2095-882X</identifier><identifier>EISSN: 1751-861X</identifier><identifier>EISSN: 2589-0514</identifier><identifier>DOI: 10.1049/iet-cdt.2018.5008</identifier><language>eng</language><publisher>Beijing: The Institution of Engineering and Technology</publisher><subject>binary codes ; bitwise XOR operations ; code rate ; Codes ; computational complexity ; decoding ; decoding procedures ; double‐bit error correcting codes ; encoding procedures ; Error correction &amp; detection ; error correction codes ; error detection codes ; Galois fields ; Galois finite field ; group testing based error control codes approach ; GTB codes trade redundancy ; GTB ECCs ; Hamming codes ; lightweight group testing based nonbinary error correction codes ; low computation complexity requirements ; memory structures ; multibyte ECC schemes ; multibyte error correction granularity ; Q‐ary codeword ; reliable storage‐compute system design ; Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</subject><ispartof>Chronic diseases and translational medicine, 2019-05, Vol.13 (3), p.140-153</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright John Wiley &amp; Sons, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</citedby><cites>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</cites><orcidid>0000-0002-9450-6533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cdt.2018.5008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cdt.2018.5008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cdt.2018.5008$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Bu, Lake</creatorcontrib><creatorcontrib>Karpovsky, Mark G</creatorcontrib><creatorcontrib>Kinsy, Michel A</creatorcontrib><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><title>Chronic diseases and translational medicine</title><description>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlog⁡Q). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</description><subject>binary codes</subject><subject>bitwise XOR operations</subject><subject>code rate</subject><subject>Codes</subject><subject>computational complexity</subject><subject>decoding</subject><subject>decoding procedures</subject><subject>double‐bit error correcting codes</subject><subject>encoding procedures</subject><subject>Error correction &amp; detection</subject><subject>error correction codes</subject><subject>error detection codes</subject><subject>Galois fields</subject><subject>Galois finite field</subject><subject>group testing based error control codes approach</subject><subject>GTB codes trade redundancy</subject><subject>GTB ECCs</subject><subject>Hamming codes</subject><subject>lightweight group testing based nonbinary error correction codes</subject><subject>low computation complexity requirements</subject><subject>memory structures</subject><subject>multibyte ECC schemes</subject><subject>multibyte error correction granularity</subject><subject>Q‐ary codeword</subject><subject>reliable storage‐compute system design</subject><subject>Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</subject><issn>1751-8601</issn><issn>1751-861X</issn><issn>2095-882X</issn><issn>1751-861X</issn><issn>2589-0514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEFLxDAQhYsouK7-AG8Bz10nSdu03nR1VVjwsoK3kKZpN0u3qUnKsv_elMrexMvMMLw38_ii6BbDAkNS3GvlY1n5BQGcL1KA_CyaYZbiOM_w1_lpBnwZXTm3A0izFPJZNDwrp5sOmRpZ1WpRtgo5b6xoFBJdhaTZ94MPu6Pzau_QQfstanWz9Qc1VtRYM_TIK-d116BSOFWhznRxqTthj0hZa2y4Yq2SXpsujJVy19FFLVqnbn77PPpcvWyWb_H64_V9-biOJc0IiYVgspBVXRKcJHVZUJXIFChkhWBJVQBNMUlTJhiVgokih7rKCcsyAWUtkhroPLqb7vbWfA8hI9-ZwXbhJadQEAoM8iKo8KSS1jhnVc17q_chPcfAR7o80OWBLh_p8pFu8DxMnoNu1fF_A18-b8jTCoAQEszxZB5lp0R_P_sBcEKR1g</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Bu, Lake</creator><creator>Karpovsky, Mark G</creator><creator>Kinsy, Michel A</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9450-6533</orcidid></search><sort><creationdate>201905</creationdate><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><author>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>binary codes</topic><topic>bitwise XOR operations</topic><topic>code rate</topic><topic>Codes</topic><topic>computational complexity</topic><topic>decoding</topic><topic>decoding procedures</topic><topic>double‐bit error correcting codes</topic><topic>encoding procedures</topic><topic>Error correction &amp; detection</topic><topic>error correction codes</topic><topic>error detection codes</topic><topic>Galois fields</topic><topic>Galois finite field</topic><topic>group testing based error control codes approach</topic><topic>GTB codes trade redundancy</topic><topic>GTB ECCs</topic><topic>Hamming codes</topic><topic>lightweight group testing based nonbinary error correction codes</topic><topic>low computation complexity requirements</topic><topic>memory structures</topic><topic>multibyte ECC schemes</topic><topic>multibyte error correction granularity</topic><topic>Q‐ary codeword</topic><topic>reliable storage‐compute system design</topic><topic>Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Lake</creatorcontrib><creatorcontrib>Karpovsky, Mark G</creatorcontrib><creatorcontrib>Kinsy, Michel A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Chronic diseases and translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bu, Lake</au><au>Karpovsky, Mark G</au><au>Kinsy, Michel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</atitle><jtitle>Chronic diseases and translational medicine</jtitle><date>2019-05</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>1751-8601</issn><issn>1751-861X</issn><issn>2095-882X</issn><eissn>1751-861X</eissn><eissn>2589-0514</eissn><abstract>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlog⁡Q). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</abstract><cop>Beijing</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cdt.2018.5008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9450-6533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8601
ispartof Chronic diseases and translational medicine, 2019-05, Vol.13 (3), p.140-153
issn 1751-8601
1751-861X
2095-882X
1751-861X
2589-0514
language eng
recordid cdi_proquest_journals_3092307089
source Wiley Online Library Open Access
subjects binary codes
bitwise XOR operations
code rate
Codes
computational complexity
decoding
decoding procedures
double‐bit error correcting codes
encoding procedures
Error correction & detection
error correction codes
error detection codes
Galois fields
Galois finite field
group testing based error control codes approach
GTB codes trade redundancy
GTB ECCs
Hamming codes
lightweight group testing based nonbinary error correction codes
low computation complexity requirements
memory structures
multibyte ECC schemes
multibyte error correction granularity
Q‐ary codeword
reliable storage‐compute system design
Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems
title Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20reliable%20storage%20and%20compute%20systems%20with%20lightweight%20group%20testing%20based%20non-binary%20error%20correction%20codes&rft.jtitle=Chronic%20diseases%20and%20translational%20medicine&rft.au=Bu,%20Lake&rft.date=2019-05&rft.volume=13&rft.issue=3&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=1751-8601&rft.eissn=1751-861X&rft_id=info:doi/10.1049/iet-cdt.2018.5008&rft_dat=%3Cproquest_24P%3E3092307089%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092307089&rft_id=info:pmid/&rfr_iscdi=true