Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes
In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the mu...
Gespeichert in:
Veröffentlicht in: | Chronic diseases and translational medicine 2019-05, Vol.13 (3), p.140-153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 3 |
container_start_page | 140 |
container_title | Chronic diseases and translational medicine |
container_volume | 13 |
creator | Bu, Lake Karpovsky, Mark G Kinsy, Michel A |
description | In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlogQ). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on. |
doi_str_mv | 10.1049/iet-cdt.2018.5008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_3092307089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092307089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYsouK7-AG8Bz10nSdu03nR1VVjwsoK3kKZpN0u3qUnKsv_elMrexMvMMLw38_ii6BbDAkNS3GvlY1n5BQGcL1KA_CyaYZbiOM_w1_lpBnwZXTm3A0izFPJZNDwrp5sOmRpZ1WpRtgo5b6xoFBJdhaTZ94MPu6Pzau_QQfstanWz9Qc1VtRYM_TIK-d116BSOFWhznRxqTthj0hZa2y4Yq2SXpsujJVy19FFLVqnbn77PPpcvWyWb_H64_V9-biOJc0IiYVgspBVXRKcJHVZUJXIFChkhWBJVQBNMUlTJhiVgokih7rKCcsyAWUtkhroPLqb7vbWfA8hI9-ZwXbhJadQEAoM8iKo8KSS1jhnVc17q_chPcfAR7o80OWBLh_p8pFu8DxMnoNu1fF_A18-b8jTCoAQEszxZB5lp0R_P_sBcEKR1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092307089</pqid></control><display><type>article</type><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><source>Wiley Online Library Open Access</source><creator>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</creator><creatorcontrib>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</creatorcontrib><description>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlogQ). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</description><identifier>ISSN: 1751-8601</identifier><identifier>ISSN: 1751-861X</identifier><identifier>ISSN: 2095-882X</identifier><identifier>EISSN: 1751-861X</identifier><identifier>EISSN: 2589-0514</identifier><identifier>DOI: 10.1049/iet-cdt.2018.5008</identifier><language>eng</language><publisher>Beijing: The Institution of Engineering and Technology</publisher><subject>binary codes ; bitwise XOR operations ; code rate ; Codes ; computational complexity ; decoding ; decoding procedures ; double‐bit error correcting codes ; encoding procedures ; Error correction & detection ; error correction codes ; error detection codes ; Galois fields ; Galois finite field ; group testing based error control codes approach ; GTB codes trade redundancy ; GTB ECCs ; Hamming codes ; lightweight group testing based nonbinary error correction codes ; low computation complexity requirements ; memory structures ; multibyte ECC schemes ; multibyte error correction granularity ; Q‐ary codeword ; reliable storage‐compute system design ; Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</subject><ispartof>Chronic diseases and translational medicine, 2019-05, Vol.13 (3), p.140-153</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright John Wiley & Sons, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</citedby><cites>FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</cites><orcidid>0000-0002-9450-6533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cdt.2018.5008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cdt.2018.5008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cdt.2018.5008$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Bu, Lake</creatorcontrib><creatorcontrib>Karpovsky, Mark G</creatorcontrib><creatorcontrib>Kinsy, Michel A</creatorcontrib><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><title>Chronic diseases and translational medicine</title><description>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlogQ). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</description><subject>binary codes</subject><subject>bitwise XOR operations</subject><subject>code rate</subject><subject>Codes</subject><subject>computational complexity</subject><subject>decoding</subject><subject>decoding procedures</subject><subject>double‐bit error correcting codes</subject><subject>encoding procedures</subject><subject>Error correction & detection</subject><subject>error correction codes</subject><subject>error detection codes</subject><subject>Galois fields</subject><subject>Galois finite field</subject><subject>group testing based error control codes approach</subject><subject>GTB codes trade redundancy</subject><subject>GTB ECCs</subject><subject>Hamming codes</subject><subject>lightweight group testing based nonbinary error correction codes</subject><subject>low computation complexity requirements</subject><subject>memory structures</subject><subject>multibyte ECC schemes</subject><subject>multibyte error correction granularity</subject><subject>Q‐ary codeword</subject><subject>reliable storage‐compute system design</subject><subject>Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</subject><issn>1751-8601</issn><issn>1751-861X</issn><issn>2095-882X</issn><issn>1751-861X</issn><issn>2589-0514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEFLxDAQhYsouK7-AG8Bz10nSdu03nR1VVjwsoK3kKZpN0u3qUnKsv_elMrexMvMMLw38_ii6BbDAkNS3GvlY1n5BQGcL1KA_CyaYZbiOM_w1_lpBnwZXTm3A0izFPJZNDwrp5sOmRpZ1WpRtgo5b6xoFBJdhaTZ94MPu6Pzau_QQfstanWz9Qc1VtRYM_TIK-d116BSOFWhznRxqTthj0hZa2y4Yq2SXpsujJVy19FFLVqnbn77PPpcvWyWb_H64_V9-biOJc0IiYVgspBVXRKcJHVZUJXIFChkhWBJVQBNMUlTJhiVgokih7rKCcsyAWUtkhroPLqb7vbWfA8hI9-ZwXbhJadQEAoM8iKo8KSS1jhnVc17q_chPcfAR7o80OWBLh_p8pFu8DxMnoNu1fF_A18-b8jTCoAQEszxZB5lp0R_P_sBcEKR1g</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Bu, Lake</creator><creator>Karpovsky, Mark G</creator><creator>Kinsy, Michel A</creator><general>The Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9450-6533</orcidid></search><sort><creationdate>201905</creationdate><title>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</title><author>Bu, Lake ; Karpovsky, Mark G ; Kinsy, Michel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3622-aa7c9cdfb2144fb93e4c503069a74d903512557a73ca7a980fd82766a0bfa4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>binary codes</topic><topic>bitwise XOR operations</topic><topic>code rate</topic><topic>Codes</topic><topic>computational complexity</topic><topic>decoding</topic><topic>decoding procedures</topic><topic>double‐bit error correcting codes</topic><topic>encoding procedures</topic><topic>Error correction & detection</topic><topic>error correction codes</topic><topic>error detection codes</topic><topic>Galois fields</topic><topic>Galois finite field</topic><topic>group testing based error control codes approach</topic><topic>GTB codes trade redundancy</topic><topic>GTB ECCs</topic><topic>Hamming codes</topic><topic>lightweight group testing based nonbinary error correction codes</topic><topic>low computation complexity requirements</topic><topic>memory structures</topic><topic>multibyte ECC schemes</topic><topic>multibyte error correction granularity</topic><topic>Q‐ary codeword</topic><topic>reliable storage‐compute system design</topic><topic>Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Lake</creatorcontrib><creatorcontrib>Karpovsky, Mark G</creatorcontrib><creatorcontrib>Kinsy, Michel A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Chronic diseases and translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bu, Lake</au><au>Karpovsky, Mark G</au><au>Kinsy, Michel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes</atitle><jtitle>Chronic diseases and translational medicine</jtitle><date>2019-05</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>1751-8601</issn><issn>1751-861X</issn><issn>2095-882X</issn><eissn>1751-861X</eissn><eissn>2589-0514</eissn><abstract>In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where $Q \ge 2$Q≥2, the compute complexity is mere $O\lpar mN\log Q\rpar $O(mNlogQ). The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.</abstract><cop>Beijing</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cdt.2018.5008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9450-6533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8601 |
ispartof | Chronic diseases and translational medicine, 2019-05, Vol.13 (3), p.140-153 |
issn | 1751-8601 1751-861X 2095-882X 1751-861X 2589-0514 |
language | eng |
recordid | cdi_proquest_journals_3092307089 |
source | Wiley Online Library Open Access |
subjects | binary codes bitwise XOR operations code rate Codes computational complexity decoding decoding procedures double‐bit error correcting codes encoding procedures Error correction & detection error correction codes error detection codes Galois fields Galois finite field group testing based error control codes approach GTB codes trade redundancy GTB ECCs Hamming codes lightweight group testing based nonbinary error correction codes low computation complexity requirements memory structures multibyte ECC schemes multibyte error correction granularity Q‐ary codeword reliable storage‐compute system design Special Issue: Defect and Fault Tolerance in VLSI and Nanotechnology Systems |
title | Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20reliable%20storage%20and%20compute%20systems%20with%20lightweight%20group%20testing%20based%20non-binary%20error%20correction%20codes&rft.jtitle=Chronic%20diseases%20and%20translational%20medicine&rft.au=Bu,%20Lake&rft.date=2019-05&rft.volume=13&rft.issue=3&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=1751-8601&rft.eissn=1751-861X&rft_id=info:doi/10.1049/iet-cdt.2018.5008&rft_dat=%3Cproquest_24P%3E3092307089%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092307089&rft_id=info:pmid/&rfr_iscdi=true |