Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning
Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless technology letters (Print) 2024-05, Vol.34 (5), p.463-466 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 5 |
container_start_page | 463 |
container_title | IEEE microwave and wireless technology letters (Print) |
container_volume | 34 |
creator | Wang, Jiawen Fan, Caizhi Liao, Yihuan Zhou, Lilin |
description | Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with 2^{108} total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process. |
doi_str_mv | 10.1109/LMWT.2024.3385982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3092271208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10499815</ieee_id><sourcerecordid>3092271208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUexM39rGUp5SKHorghLVJNyhVmgTbPfTvcR9CnHa0O7OzO4xdCz4Wguu7fP6xHAOHdJwkSmoFZ2wAWSZiLZU6_8PZ5yUbObfmnIOewETIAftaoPdk29h38bRwne193bXRwtKqLg-w6mw03za-bnBHoR3NyeMGg6jGJjpoCrLRPbowC_wHoj7KCW1bt99X7KLCxtHoVIfs_elxOXuJ87fn19k0j0vQqY8lEiRpShBuLwpZpFzJiawUiAwLXoJChQJL4JXQSbriSovwbYFlxaUohUyG7Pa4t7fdz5acN-tua9tgaRKuATIBXAWWOLJK2zlnqTK9rTdod0Zws0_S7JM0-yTNKcmguTlqaiL6x0-1VsH4F77zb0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092271208</pqid></control><display><type>article</type><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</creator><creatorcontrib>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</creatorcontrib><description>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with <inline-formula> <tex-math notation="LaTeX">2^{108} </tex-math></inline-formula> total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2024.3385982</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorbers ; Absorbers (materials) ; Absorption ; Artificial neural networks ; Complexity theory ; Convolutional neural networks ; Data models ; Deep learning ; Deep learning (DL) ; Design improvements ; digital coding metamaterial ; Digital systems ; Frequency ranges ; Frequency selective surfaces ; Image coding ; Image enhancement ; Machine learning ; metamaterial absorber (MMA) ; Metamaterials ; Monolayers ; multilayered absorber ; Permutations ; Predictive models ; Training</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2024-05, Vol.34 (5), p.463-466</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</citedby><cites>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</cites><orcidid>0009-0006-7569-2904 ; 0000-0003-0878-2791 ; 0009-0000-3282-060X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10499815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10499815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jiawen</creatorcontrib><creatorcontrib>Fan, Caizhi</creatorcontrib><creatorcontrib>Liao, Yihuan</creatorcontrib><creatorcontrib>Zhou, Lilin</creatorcontrib><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with <inline-formula> <tex-math notation="LaTeX">2^{108} </tex-math></inline-formula> total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Absorption</subject><subject>Artificial neural networks</subject><subject>Complexity theory</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Design improvements</subject><subject>digital coding metamaterial</subject><subject>Digital systems</subject><subject>Frequency ranges</subject><subject>Frequency selective surfaces</subject><subject>Image coding</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>metamaterial absorber (MMA)</subject><subject>Metamaterials</subject><subject>Monolayers</subject><subject>multilayered absorber</subject><subject>Permutations</subject><subject>Predictive models</subject><subject>Training</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUexM39rGUp5SKHorghLVJNyhVmgTbPfTvcR9CnHa0O7OzO4xdCz4Wguu7fP6xHAOHdJwkSmoFZ2wAWSZiLZU6_8PZ5yUbObfmnIOewETIAftaoPdk29h38bRwne193bXRwtKqLg-w6mw03za-bnBHoR3NyeMGg6jGJjpoCrLRPbowC_wHoj7KCW1bt99X7KLCxtHoVIfs_elxOXuJ87fn19k0j0vQqY8lEiRpShBuLwpZpFzJiawUiAwLXoJChQJL4JXQSbriSovwbYFlxaUohUyG7Pa4t7fdz5acN-tua9tgaRKuATIBXAWWOLJK2zlnqTK9rTdod0Zws0_S7JM0-yTNKcmguTlqaiL6x0-1VsH4F77zb0A</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Jiawen</creator><creator>Fan, Caizhi</creator><creator>Liao, Yihuan</creator><creator>Zhou, Lilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-7569-2904</orcidid><orcidid>https://orcid.org/0000-0003-0878-2791</orcidid><orcidid>https://orcid.org/0009-0000-3282-060X</orcidid></search><sort><creationdate>20240501</creationdate><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><author>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Absorption</topic><topic>Artificial neural networks</topic><topic>Complexity theory</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Design improvements</topic><topic>digital coding metamaterial</topic><topic>Digital systems</topic><topic>Frequency ranges</topic><topic>Frequency selective surfaces</topic><topic>Image coding</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>metamaterial absorber (MMA)</topic><topic>Metamaterials</topic><topic>Monolayers</topic><topic>multilayered absorber</topic><topic>Permutations</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiawen</creatorcontrib><creatorcontrib>Fan, Caizhi</creatorcontrib><creatorcontrib>Liao, Yihuan</creatorcontrib><creatorcontrib>Zhou, Lilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jiawen</au><au>Fan, Caizhi</au><au>Liao, Yihuan</au><au>Zhou, Lilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with <inline-formula> <tex-math notation="LaTeX">2^{108} </tex-math></inline-formula> total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMWT.2024.3385982</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0006-7569-2904</orcidid><orcidid>https://orcid.org/0000-0003-0878-2791</orcidid><orcidid>https://orcid.org/0009-0000-3282-060X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2771-957X |
ispartof | IEEE microwave and wireless technology letters (Print), 2024-05, Vol.34 (5), p.463-466 |
issn | 2771-957X 2771-9588 |
language | eng |
recordid | cdi_proquest_journals_3092271208 |
source | IEEE Electronic Library (IEL) |
subjects | Absorbers Absorbers (materials) Absorption Artificial neural networks Complexity theory Convolutional neural networks Data models Deep learning Deep learning (DL) Design improvements digital coding metamaterial Digital systems Frequency ranges Frequency selective surfaces Image coding Image enhancement Machine learning metamaterial absorber (MMA) Metamaterials Monolayers multilayered absorber Permutations Predictive models Training |
title | Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-to-Absorption%20Prediction%20for%20Multilayered%20Metamaterial%20Absorber%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Wang,%20Jiawen&rft.date=2024-05-01&rft.volume=34&rft.issue=5&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2024.3385982&rft_dat=%3Cproquest_RIE%3E3092271208%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092271208&rft_id=info:pmid/&rft_ieee_id=10499815&rfr_iscdi=true |