Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning

Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless technology letters (Print) 2024-05, Vol.34 (5), p.463-466
Hauptverfasser: Wang, Jiawen, Fan, Caizhi, Liao, Yihuan, Zhou, Lilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 5
container_start_page 463
container_title IEEE microwave and wireless technology letters (Print)
container_volume 34
creator Wang, Jiawen
Fan, Caizhi
Liao, Yihuan
Zhou, Lilin
description Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with 2^{108} total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.
doi_str_mv 10.1109/LMWT.2024.3385982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3092271208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10499815</ieee_id><sourcerecordid>3092271208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUexM39rGUp5SKHorghLVJNyhVmgTbPfTvcR9CnHa0O7OzO4xdCz4Wguu7fP6xHAOHdJwkSmoFZ2wAWSZiLZU6_8PZ5yUbObfmnIOewETIAftaoPdk29h38bRwne193bXRwtKqLg-w6mw03za-bnBHoR3NyeMGg6jGJjpoCrLRPbowC_wHoj7KCW1bt99X7KLCxtHoVIfs_elxOXuJ87fn19k0j0vQqY8lEiRpShBuLwpZpFzJiawUiAwLXoJChQJL4JXQSbriSovwbYFlxaUohUyG7Pa4t7fdz5acN-tua9tgaRKuATIBXAWWOLJK2zlnqTK9rTdod0Zws0_S7JM0-yTNKcmguTlqaiL6x0-1VsH4F77zb0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092271208</pqid></control><display><type>article</type><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</creator><creatorcontrib>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</creatorcontrib><description>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2^{108} &lt;/tex-math&gt;&lt;/inline-formula&gt; total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2024.3385982</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorbers ; Absorbers (materials) ; Absorption ; Artificial neural networks ; Complexity theory ; Convolutional neural networks ; Data models ; Deep learning ; Deep learning (DL) ; Design improvements ; digital coding metamaterial ; Digital systems ; Frequency ranges ; Frequency selective surfaces ; Image coding ; Image enhancement ; Machine learning ; metamaterial absorber (MMA) ; Metamaterials ; Monolayers ; multilayered absorber ; Permutations ; Predictive models ; Training</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2024-05, Vol.34 (5), p.463-466</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</citedby><cites>FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</cites><orcidid>0009-0006-7569-2904 ; 0000-0003-0878-2791 ; 0009-0000-3282-060X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10499815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10499815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jiawen</creatorcontrib><creatorcontrib>Fan, Caizhi</creatorcontrib><creatorcontrib>Liao, Yihuan</creatorcontrib><creatorcontrib>Zhou, Lilin</creatorcontrib><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2^{108} &lt;/tex-math&gt;&lt;/inline-formula&gt; total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</description><subject>Absorbers</subject><subject>Absorbers (materials)</subject><subject>Absorption</subject><subject>Artificial neural networks</subject><subject>Complexity theory</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Design improvements</subject><subject>digital coding metamaterial</subject><subject>Digital systems</subject><subject>Frequency ranges</subject><subject>Frequency selective surfaces</subject><subject>Image coding</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>metamaterial absorber (MMA)</subject><subject>Metamaterials</subject><subject>Monolayers</subject><subject>multilayered absorber</subject><subject>Permutations</subject><subject>Predictive models</subject><subject>Training</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUexM39rGUp5SKHorghLVJNyhVmgTbPfTvcR9CnHa0O7OzO4xdCz4Wguu7fP6xHAOHdJwkSmoFZ2wAWSZiLZU6_8PZ5yUbObfmnIOewETIAftaoPdk29h38bRwne193bXRwtKqLg-w6mw03za-bnBHoR3NyeMGg6jGJjpoCrLRPbowC_wHoj7KCW1bt99X7KLCxtHoVIfs_elxOXuJ87fn19k0j0vQqY8lEiRpShBuLwpZpFzJiawUiAwLXoJChQJL4JXQSbriSovwbYFlxaUohUyG7Pa4t7fdz5acN-tua9tgaRKuATIBXAWWOLJK2zlnqTK9rTdod0Zws0_S7JM0-yTNKcmguTlqaiL6x0-1VsH4F77zb0A</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Jiawen</creator><creator>Fan, Caizhi</creator><creator>Liao, Yihuan</creator><creator>Zhou, Lilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-7569-2904</orcidid><orcidid>https://orcid.org/0000-0003-0878-2791</orcidid><orcidid>https://orcid.org/0009-0000-3282-060X</orcidid></search><sort><creationdate>20240501</creationdate><title>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</title><author>Wang, Jiawen ; Fan, Caizhi ; Liao, Yihuan ; Zhou, Lilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5ae2344e2982bb5b408565f8217ab0c28a8a1ac20f1934d0891024bacf051c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Absorbers (materials)</topic><topic>Absorption</topic><topic>Artificial neural networks</topic><topic>Complexity theory</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Design improvements</topic><topic>digital coding metamaterial</topic><topic>Digital systems</topic><topic>Frequency ranges</topic><topic>Frequency selective surfaces</topic><topic>Image coding</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>metamaterial absorber (MMA)</topic><topic>Metamaterials</topic><topic>Monolayers</topic><topic>multilayered absorber</topic><topic>Permutations</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiawen</creatorcontrib><creatorcontrib>Fan, Caizhi</creatorcontrib><creatorcontrib>Liao, Yihuan</creatorcontrib><creatorcontrib>Zhou, Lilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jiawen</au><au>Fan, Caizhi</au><au>Liao, Yihuan</au><au>Zhou, Lilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract>Metamaterial absorbers (MMAs) allow for a wider range of applications than single-layer ones for their multilayered nature, especially in ultrabroadband absorption. However, the design of multilayered MMAs is extremely complicated. Employed deep learning (DL), using a surrogate model to replace the time-consuming full-wave simulations during the design process can greatly improve the design efficiency. In this letter, an efficient approach for constructing the surrogate model of multilayered MMA is proposed. The coding frequency selective surfaces (FSSs) are converted into multichannel images and then amplified to enhance the efficiency of dataset utilization and model training. A convolutional neural network (CNN) is developed as the surrogate model to achieve pattern-to-absorption prediction for the multilayered MMA with a high degree of freedom. Trained on only 18 000 instances with &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2^{108} &lt;/tex-math&gt;&lt;/inline-formula&gt; total permutations, the CNN can predict the absorption of the meta-atoms within the frequency range of 1.00-20.00 GHz in 0.05 s with a mean deviation of 0.02144. Our letter provides an efficient way to construct surrogate models for multilayered MMA in the DL-based design process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMWT.2024.3385982</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0006-7569-2904</orcidid><orcidid>https://orcid.org/0000-0003-0878-2791</orcidid><orcidid>https://orcid.org/0009-0000-3282-060X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2771-957X
ispartof IEEE microwave and wireless technology letters (Print), 2024-05, Vol.34 (5), p.463-466
issn 2771-957X
2771-9588
language eng
recordid cdi_proquest_journals_3092271208
source IEEE Electronic Library (IEL)
subjects Absorbers
Absorbers (materials)
Absorption
Artificial neural networks
Complexity theory
Convolutional neural networks
Data models
Deep learning
Deep learning (DL)
Design improvements
digital coding metamaterial
Digital systems
Frequency ranges
Frequency selective surfaces
Image coding
Image enhancement
Machine learning
metamaterial absorber (MMA)
Metamaterials
Monolayers
multilayered absorber
Permutations
Predictive models
Training
title Pattern-to-Absorption Prediction for Multilayered Metamaterial Absorber Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-to-Absorption%20Prediction%20for%20Multilayered%20Metamaterial%20Absorber%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Wang,%20Jiawen&rft.date=2024-05-01&rft.volume=34&rft.issue=5&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2024.3385982&rft_dat=%3Cproquest_RIE%3E3092271208%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092271208&rft_id=info:pmid/&rft_ieee_id=10499815&rfr_iscdi=true