Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte

It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-08, Vol.35 (23), p.1563, Article 1563
Hauptverfasser: Zakariya’u, Ibrahim, Rawat, Suneyana, Kathuria, Shubham, Ngulezhu, Thejakhrielie, Song, Shufeng, Yahya, M. Z. A., Savilov, Serguei V., Polu, Anji Reddy, Singh, Ram Chandra, Singh, Pramod K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 1563
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Zakariya’u, Ibrahim
Rawat, Suneyana
Kathuria, Shubham
Ngulezhu, Thejakhrielie
Song, Shufeng
Yahya, M. Z. A.
Savilov, Serguei V.
Polu, Anji Reddy
Singh, Ram Chandra
Singh, Pramod K.
description It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics to improve polymer electrolytes through doping. This study explores the incorporation of ionic liquids into polymer matrices to create novel ionic-liquid-doped polymer electrolytes (ILDPEs). We synthesized a ILDPEs using Poly(ethyl methacrylate) (PEMA) as the host polymer with salt sodium iodide (NaI) doped with a new ionic liquid (1-hexyl-3-methylimidazolium iodide) synthesized using solution cast technique. Impedance spectroscopy revealed that doping ionic liquid enhances the ionic conductivity of the PEMA + NaI complex. Ionic conductivity significantly increased upon the addition of the ionic liquid (IL), reaching a maximum value of 7.7 × 10 –4 S/cm at room temperature. The ionic transference number ( t ion ) for the polymer electrolyte with the highest ionic conductivity was calculated using Wagner polarization method while electrochemical stability window was calculated by linear Sweep Voltammetry. The crystalline nature of the ILDPEs films was studied using Polarizing Optical Microscopy (POM). To confirm the complex formation and bonding structure, Fourier-transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) were also employed. Finally, dye-synthesized solar cell (DSSC) and electric double-layer capacitor (EDLC) were fabricated using the highest ionic conducting polymer electrolytes.
doi_str_mv 10.1007/s10854-024-13301-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092152873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092152873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b72cccd6ef0eebe411262755603fd2ec70acc9fe0e971763d6a7b8a4dcf94c423</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuAW6MnlzbtUobxAgNuFMRNaJOTIUOnnUnaxbjyHXxDn8TqCO5cHQ7n-_8DHyHnHK44gL5OHIpMMRCKcSmBMzggE55pyVQhXg7JBMpMM5UJcUxOUloBQK5kMSGvc--DDdj2lzT1Vd0gdTtkCdsU-vCGjqauqSK12DR0SKFd0tC1wdImbIfgPt8_xntwdNM1uzVGig3aPo5Lj6fkyFdNwrPfOSXPt_On2T1bPN49zG4WzAqAntVaWGtdjh4Qa1Sci1zoLMtBeifQaqisLT0ClprrXLq80nVRKWd9qawSckou9r2b2G0HTL1ZdUNsx5dGQil4JgotR0rsKRu7lCJ6s4lhXcWd4WC-HZq9QzM6ND8ODYwhuQ-lEW6XGP-q_0l9Aej0dyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092152873</pqid></control><display><type>article</type><title>Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte</title><source>Springer Nature - Complete Springer Journals</source><creator>Zakariya’u, Ibrahim ; Rawat, Suneyana ; Kathuria, Shubham ; Ngulezhu, Thejakhrielie ; Song, Shufeng ; Yahya, M. Z. A. ; Savilov, Serguei V. ; Polu, Anji Reddy ; Singh, Ram Chandra ; Singh, Pramod K.</creator><creatorcontrib>Zakariya’u, Ibrahim ; Rawat, Suneyana ; Kathuria, Shubham ; Ngulezhu, Thejakhrielie ; Song, Shufeng ; Yahya, M. Z. A. ; Savilov, Serguei V. ; Polu, Anji Reddy ; Singh, Ram Chandra ; Singh, Pramod K.</creatorcontrib><description>It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics to improve polymer electrolytes through doping. This study explores the incorporation of ionic liquids into polymer matrices to create novel ionic-liquid-doped polymer electrolytes (ILDPEs). We synthesized a ILDPEs using Poly(ethyl methacrylate) (PEMA) as the host polymer with salt sodium iodide (NaI) doped with a new ionic liquid (1-hexyl-3-methylimidazolium iodide) synthesized using solution cast technique. Impedance spectroscopy revealed that doping ionic liquid enhances the ionic conductivity of the PEMA + NaI complex. Ionic conductivity significantly increased upon the addition of the ionic liquid (IL), reaching a maximum value of 7.7 × 10 –4 S/cm at room temperature. The ionic transference number ( t ion ) for the polymer electrolyte with the highest ionic conductivity was calculated using Wagner polarization method while electrochemical stability window was calculated by linear Sweep Voltammetry. The crystalline nature of the ILDPEs films was studied using Polarizing Optical Microscopy (POM). To confirm the complex formation and bonding structure, Fourier-transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) were also employed. Finally, dye-synthesized solar cell (DSSC) and electric double-layer capacitor (EDLC) were fabricated using the highest ionic conducting polymer electrolytes.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13301-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Complex formation ; Conducting polymers ; Doping ; Dye-sensitized solar cells ; Dyes ; Electrolytes ; Fourier transforms ; Infrared spectroscopy ; Ion currents ; Ionic liquids ; Materials Science ; Molten salt electrolytes ; Optical and Electronic Materials ; Optical microscopy ; Polarization ; Polymer films ; Polymers ; Room temperature ; Solid electrolytes ; Spectrum analysis ; Thermal stability</subject><ispartof>Journal of materials science. Materials in electronics, 2024-08, Vol.35 (23), p.1563, Article 1563</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b72cccd6ef0eebe411262755603fd2ec70acc9fe0e971763d6a7b8a4dcf94c423</cites><orcidid>0000-0002-3155-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13301-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13301-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zakariya’u, Ibrahim</creatorcontrib><creatorcontrib>Rawat, Suneyana</creatorcontrib><creatorcontrib>Kathuria, Shubham</creatorcontrib><creatorcontrib>Ngulezhu, Thejakhrielie</creatorcontrib><creatorcontrib>Song, Shufeng</creatorcontrib><creatorcontrib>Yahya, M. Z. A.</creatorcontrib><creatorcontrib>Savilov, Serguei V.</creatorcontrib><creatorcontrib>Polu, Anji Reddy</creatorcontrib><creatorcontrib>Singh, Ram Chandra</creatorcontrib><creatorcontrib>Singh, Pramod K.</creatorcontrib><title>Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics to improve polymer electrolytes through doping. This study explores the incorporation of ionic liquids into polymer matrices to create novel ionic-liquid-doped polymer electrolytes (ILDPEs). We synthesized a ILDPEs using Poly(ethyl methacrylate) (PEMA) as the host polymer with salt sodium iodide (NaI) doped with a new ionic liquid (1-hexyl-3-methylimidazolium iodide) synthesized using solution cast technique. Impedance spectroscopy revealed that doping ionic liquid enhances the ionic conductivity of the PEMA + NaI complex. Ionic conductivity significantly increased upon the addition of the ionic liquid (IL), reaching a maximum value of 7.7 × 10 –4 S/cm at room temperature. The ionic transference number ( t ion ) for the polymer electrolyte with the highest ionic conductivity was calculated using Wagner polarization method while electrochemical stability window was calculated by linear Sweep Voltammetry. The crystalline nature of the ILDPEs films was studied using Polarizing Optical Microscopy (POM). To confirm the complex formation and bonding structure, Fourier-transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) were also employed. Finally, dye-synthesized solar cell (DSSC) and electric double-layer capacitor (EDLC) were fabricated using the highest ionic conducting polymer electrolytes.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Complex formation</subject><subject>Conducting polymers</subject><subject>Doping</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Materials Science</subject><subject>Molten salt electrolytes</subject><subject>Optical and Electronic Materials</subject><subject>Optical microscopy</subject><subject>Polarization</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuAW6MnlzbtUobxAgNuFMRNaJOTIUOnnUnaxbjyHXxDn8TqCO5cHQ7n-_8DHyHnHK44gL5OHIpMMRCKcSmBMzggE55pyVQhXg7JBMpMM5UJcUxOUloBQK5kMSGvc--DDdj2lzT1Vd0gdTtkCdsU-vCGjqauqSK12DR0SKFd0tC1wdImbIfgPt8_xntwdNM1uzVGig3aPo5Lj6fkyFdNwrPfOSXPt_On2T1bPN49zG4WzAqAntVaWGtdjh4Qa1Sci1zoLMtBeifQaqisLT0ClprrXLq80nVRKWd9qawSckou9r2b2G0HTL1ZdUNsx5dGQil4JgotR0rsKRu7lCJ6s4lhXcWd4WC-HZq9QzM6ND8ODYwhuQ-lEW6XGP-q_0l9Aej0dyk</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zakariya’u, Ibrahim</creator><creator>Rawat, Suneyana</creator><creator>Kathuria, Shubham</creator><creator>Ngulezhu, Thejakhrielie</creator><creator>Song, Shufeng</creator><creator>Yahya, M. Z. A.</creator><creator>Savilov, Serguei V.</creator><creator>Polu, Anji Reddy</creator><creator>Singh, Ram Chandra</creator><creator>Singh, Pramod K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3155-6621</orcidid></search><sort><creationdate>20240801</creationdate><title>Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte</title><author>Zakariya’u, Ibrahim ; Rawat, Suneyana ; Kathuria, Shubham ; Ngulezhu, Thejakhrielie ; Song, Shufeng ; Yahya, M. Z. A. ; Savilov, Serguei V. ; Polu, Anji Reddy ; Singh, Ram Chandra ; Singh, Pramod K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b72cccd6ef0eebe411262755603fd2ec70acc9fe0e971763d6a7b8a4dcf94c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Complex formation</topic><topic>Conducting polymers</topic><topic>Doping</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Materials Science</topic><topic>Molten salt electrolytes</topic><topic>Optical and Electronic Materials</topic><topic>Optical microscopy</topic><topic>Polarization</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakariya’u, Ibrahim</creatorcontrib><creatorcontrib>Rawat, Suneyana</creatorcontrib><creatorcontrib>Kathuria, Shubham</creatorcontrib><creatorcontrib>Ngulezhu, Thejakhrielie</creatorcontrib><creatorcontrib>Song, Shufeng</creatorcontrib><creatorcontrib>Yahya, M. Z. A.</creatorcontrib><creatorcontrib>Savilov, Serguei V.</creatorcontrib><creatorcontrib>Polu, Anji Reddy</creatorcontrib><creatorcontrib>Singh, Ram Chandra</creatorcontrib><creatorcontrib>Singh, Pramod K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakariya’u, Ibrahim</au><au>Rawat, Suneyana</au><au>Kathuria, Shubham</au><au>Ngulezhu, Thejakhrielie</au><au>Song, Shufeng</au><au>Yahya, M. Z. A.</au><au>Savilov, Serguei V.</au><au>Polu, Anji Reddy</au><au>Singh, Ram Chandra</au><au>Singh, Pramod K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>23</issue><spage>1563</spage><pages>1563-</pages><artnum>1563</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics to improve polymer electrolytes through doping. This study explores the incorporation of ionic liquids into polymer matrices to create novel ionic-liquid-doped polymer electrolytes (ILDPEs). We synthesized a ILDPEs using Poly(ethyl methacrylate) (PEMA) as the host polymer with salt sodium iodide (NaI) doped with a new ionic liquid (1-hexyl-3-methylimidazolium iodide) synthesized using solution cast technique. Impedance spectroscopy revealed that doping ionic liquid enhances the ionic conductivity of the PEMA + NaI complex. Ionic conductivity significantly increased upon the addition of the ionic liquid (IL), reaching a maximum value of 7.7 × 10 –4 S/cm at room temperature. The ionic transference number ( t ion ) for the polymer electrolyte with the highest ionic conductivity was calculated using Wagner polarization method while electrochemical stability window was calculated by linear Sweep Voltammetry. The crystalline nature of the ILDPEs films was studied using Polarizing Optical Microscopy (POM). To confirm the complex formation and bonding structure, Fourier-transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) were also employed. Finally, dye-synthesized solar cell (DSSC) and electric double-layer capacitor (EDLC) were fabricated using the highest ionic conducting polymer electrolytes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13301-0</doi><orcidid>https://orcid.org/0000-0002-3155-6621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-08, Vol.35 (23), p.1563, Article 1563
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3092152873
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Complex formation
Conducting polymers
Doping
Dye-sensitized solar cells
Dyes
Electrolytes
Fourier transforms
Infrared spectroscopy
Ion currents
Ionic liquids
Materials Science
Molten salt electrolytes
Optical and Electronic Materials
Optical microscopy
Polarization
Polymer films
Polymers
Room temperature
Solid electrolytes
Spectrum analysis
Thermal stability
title Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20stable%20dye-sensitized%20solar%20cell%20using%20ionic%20liquid%E2%80%93solid%20polymer%20electrolyte&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zakariya%E2%80%99u,%20Ibrahim&rft.date=2024-08-01&rft.volume=35&rft.issue=23&rft.spage=1563&rft.pages=1563-&rft.artnum=1563&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13301-0&rft_dat=%3Cproquest_cross%3E3092152873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092152873&rft_id=info:pmid/&rfr_iscdi=true