Geometric tracking control of a multi‐rotor UAV for partially known trajectories
This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addres...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-09, Vol.34 (14), p.9572-9595 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9595 |
---|---|
container_issue | 14 |
container_start_page | 9572 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Kumar, Yogesh Roy, S. B. Sujit, P. B. |
description | This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories. |
doi_str_mv | 10.1002/rnc.7476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092152732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092152732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKvgIwS8eNmaf91ujqVoFYpCsV5Dmp1I2u2mJimlNx_BZ_RJzFqvnr5h5jczHx9C15QMKCHsLrRmMBKj8gT1KJGyoIzL064Wsqgk4-foIsYVIXnGRA_Np-A3kIIzOAVt1q59x8a3KfgGe4s13uya5L4_v4JPPuDF-A3brFsdktNNc8Dr1u_bbncFJhMO4iU6s7qJcPWnfbR4uH-dPBazl-nTZDwrDK1EWVR1zRhnuqQ1lENudHYtazLMvqolE8QI0BQoaCsqYkFqYkAutc1NoZfS8j66Od7dBv-xg5jUyu9Cm18qTiSjQzbiLFO3R8oEH2MAq7bBbXQ4KEpUl5jKiakusYwWR3TvGjj8y6n58-SX_wGhNm6e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092152732</pqid></control><display><type>article</type><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><source>Access via Wiley Online Library</source><creator>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</creator><creatorcontrib>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</creatorcontrib><description>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7476</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Controllers ; Dynamic structural analysis ; Error analysis ; geometric control ; multi‐rotor UAV ; nonlinear control ; Nonlinear dynamics ; Nonlinear filters ; nonlinear filters on SO$$ \mathrm{SO} ; quadrotors ; Rotors ; Tracking control ; Trajectory analysis ; Trajectory control ; Unmanned aerial vehicles</subject><ispartof>International journal of robust and nonlinear control, 2024-09, Vol.34 (14), p.9572-9595</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</cites><orcidid>0000-0002-7297-1493 ; 0000-0002-2537-2957 ; 0000-0003-3067-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Roy, S. B.</creatorcontrib><creatorcontrib>Sujit, P. B.</creatorcontrib><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><title>International journal of robust and nonlinear control</title><description>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</description><subject>Controllers</subject><subject>Dynamic structural analysis</subject><subject>Error analysis</subject><subject>geometric control</subject><subject>multi‐rotor UAV</subject><subject>nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear filters</subject><subject>nonlinear filters on SO$$ \mathrm{SO}</subject><subject>quadrotors</subject><subject>Rotors</subject><subject>Tracking control</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Unmanned aerial vehicles</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKvgIwS8eNmaf91ujqVoFYpCsV5Dmp1I2u2mJimlNx_BZ_RJzFqvnr5h5jczHx9C15QMKCHsLrRmMBKj8gT1KJGyoIzL064Wsqgk4-foIsYVIXnGRA_Np-A3kIIzOAVt1q59x8a3KfgGe4s13uya5L4_v4JPPuDF-A3brFsdktNNc8Dr1u_bbncFJhMO4iU6s7qJcPWnfbR4uH-dPBazl-nTZDwrDK1EWVR1zRhnuqQ1lENudHYtazLMvqolE8QI0BQoaCsqYkFqYkAutc1NoZfS8j66Od7dBv-xg5jUyu9Cm18qTiSjQzbiLFO3R8oEH2MAq7bBbXQ4KEpUl5jKiakusYwWR3TvGjj8y6n58-SX_wGhNm6e</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Kumar, Yogesh</creator><creator>Roy, S. B.</creator><creator>Sujit, P. B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7297-1493</orcidid><orcidid>https://orcid.org/0000-0002-2537-2957</orcidid><orcidid>https://orcid.org/0000-0003-3067-7330</orcidid></search><sort><creationdate>20240925</creationdate><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><author>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllers</topic><topic>Dynamic structural analysis</topic><topic>Error analysis</topic><topic>geometric control</topic><topic>multi‐rotor UAV</topic><topic>nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear filters</topic><topic>nonlinear filters on SO$$ \mathrm{SO}</topic><topic>quadrotors</topic><topic>Rotors</topic><topic>Tracking control</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Roy, S. B.</creatorcontrib><creatorcontrib>Sujit, P. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Yogesh</au><au>Roy, S. B.</au><au>Sujit, P. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>34</volume><issue>14</issue><spage>9572</spage><epage>9595</epage><pages>9572-9595</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7476</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7297-1493</orcidid><orcidid>https://orcid.org/0000-0002-2537-2957</orcidid><orcidid>https://orcid.org/0000-0003-3067-7330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-09, Vol.34 (14), p.9572-9595 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_3092152732 |
source | Access via Wiley Online Library |
subjects | Controllers Dynamic structural analysis Error analysis geometric control multi‐rotor UAV nonlinear control Nonlinear dynamics Nonlinear filters nonlinear filters on SO$$ \mathrm{SO} quadrotors Rotors Tracking control Trajectory analysis Trajectory control Unmanned aerial vehicles |
title | Geometric tracking control of a multi‐rotor UAV for partially known trajectories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20tracking%20control%20of%20a%20multi%E2%80%90rotor%20UAV%20for%20partially%20known%20trajectories&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Kumar,%20Yogesh&rft.date=2024-09-25&rft.volume=34&rft.issue=14&rft.spage=9572&rft.epage=9595&rft.pages=9572-9595&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7476&rft_dat=%3Cproquest_cross%3E3092152732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092152732&rft_id=info:pmid/&rfr_iscdi=true |