Geometric tracking control of a multi‐rotor UAV for partially known trajectories

This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-09, Vol.34 (14), p.9572-9595
Hauptverfasser: Kumar, Yogesh, Roy, S. B., Sujit, P. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9595
container_issue 14
container_start_page 9572
container_title International journal of robust and nonlinear control
container_volume 34
creator Kumar, Yogesh
Roy, S. B.
Sujit, P. B.
description This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.
doi_str_mv 10.1002/rnc.7476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092152732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092152732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKvgIwS8eNmaf91ujqVoFYpCsV5Dmp1I2u2mJimlNx_BZ_RJzFqvnr5h5jczHx9C15QMKCHsLrRmMBKj8gT1KJGyoIzL064Wsqgk4-foIsYVIXnGRA_Np-A3kIIzOAVt1q59x8a3KfgGe4s13uya5L4_v4JPPuDF-A3brFsdktNNc8Dr1u_bbncFJhMO4iU6s7qJcPWnfbR4uH-dPBazl-nTZDwrDK1EWVR1zRhnuqQ1lENudHYtazLMvqolE8QI0BQoaCsqYkFqYkAutc1NoZfS8j66Od7dBv-xg5jUyu9Cm18qTiSjQzbiLFO3R8oEH2MAq7bBbXQ4KEpUl5jKiakusYwWR3TvGjj8y6n58-SX_wGhNm6e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092152732</pqid></control><display><type>article</type><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><source>Access via Wiley Online Library</source><creator>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</creator><creatorcontrib>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</creatorcontrib><description>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7476</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Controllers ; Dynamic structural analysis ; Error analysis ; geometric control ; multi‐rotor UAV ; nonlinear control ; Nonlinear dynamics ; Nonlinear filters ; nonlinear filters on SO$$ \mathrm{SO} ; quadrotors ; Rotors ; Tracking control ; Trajectory analysis ; Trajectory control ; Unmanned aerial vehicles</subject><ispartof>International journal of robust and nonlinear control, 2024-09, Vol.34 (14), p.9572-9595</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</cites><orcidid>0000-0002-7297-1493 ; 0000-0002-2537-2957 ; 0000-0003-3067-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Roy, S. B.</creatorcontrib><creatorcontrib>Sujit, P. B.</creatorcontrib><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><title>International journal of robust and nonlinear control</title><description>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</description><subject>Controllers</subject><subject>Dynamic structural analysis</subject><subject>Error analysis</subject><subject>geometric control</subject><subject>multi‐rotor UAV</subject><subject>nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear filters</subject><subject>nonlinear filters on SO$$ \mathrm{SO}</subject><subject>quadrotors</subject><subject>Rotors</subject><subject>Tracking control</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>Unmanned aerial vehicles</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKvgIwS8eNmaf91ujqVoFYpCsV5Dmp1I2u2mJimlNx_BZ_RJzFqvnr5h5jczHx9C15QMKCHsLrRmMBKj8gT1KJGyoIzL064Wsqgk4-foIsYVIXnGRA_Np-A3kIIzOAVt1q59x8a3KfgGe4s13uya5L4_v4JPPuDF-A3brFsdktNNc8Dr1u_bbncFJhMO4iU6s7qJcPWnfbR4uH-dPBazl-nTZDwrDK1EWVR1zRhnuqQ1lENudHYtazLMvqolE8QI0BQoaCsqYkFqYkAutc1NoZfS8j66Od7dBv-xg5jUyu9Cm18qTiSjQzbiLFO3R8oEH2MAq7bBbXQ4KEpUl5jKiakusYwWR3TvGjj8y6n58-SX_wGhNm6e</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Kumar, Yogesh</creator><creator>Roy, S. B.</creator><creator>Sujit, P. B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7297-1493</orcidid><orcidid>https://orcid.org/0000-0002-2537-2957</orcidid><orcidid>https://orcid.org/0000-0003-3067-7330</orcidid></search><sort><creationdate>20240925</creationdate><title>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</title><author>Kumar, Yogesh ; Roy, S. B. ; Sujit, P. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1846-8dd2232a61de653ca7479d059928b240c4ea1e1eaf480fe9a0ce9bafa1e4ab9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllers</topic><topic>Dynamic structural analysis</topic><topic>Error analysis</topic><topic>geometric control</topic><topic>multi‐rotor UAV</topic><topic>nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear filters</topic><topic>nonlinear filters on SO$$ \mathrm{SO}</topic><topic>quadrotors</topic><topic>Rotors</topic><topic>Tracking control</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Roy, S. B.</creatorcontrib><creatorcontrib>Sujit, P. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Yogesh</au><au>Roy, S. B.</au><au>Sujit, P. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric tracking control of a multi‐rotor UAV for partially known trajectories</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>34</volume><issue>14</issue><spage>9572</spage><epage>9595</epage><pages>9572-9595</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article presents a trajectory‐tracking controller for multi‐rotor unmanned aerial vehicles (UAVs) in scenarios where only the desired position and heading are known without the higher‐order derivatives. The proposed solution modifies the state‐of‐the‐art geometric controller, effectively addressing challenges related to the non‐existence of the desired attitude and ensuring positive total thrust input for all time. We tackle the additional challenge of the non‐availability of the higher derivatives of the trajectory by introducing novel nonlinear filter structures. We formalize theoretically the effect of these filter structures on the system error dynamics. Subsequently, through a rigorous theoretical analysis, we demonstrate that the proposed controller leads to uniformly ultimately bounded system error dynamics. To demonstrate the controller's effectiveness and potential to enhance multi‐rotor performance and reliability in practical applications, we present a simulation study considering two examples with time‐varying trajectories.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7476</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7297-1493</orcidid><orcidid>https://orcid.org/0000-0002-2537-2957</orcidid><orcidid>https://orcid.org/0000-0003-3067-7330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-09, Vol.34 (14), p.9572-9595
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_3092152732
source Access via Wiley Online Library
subjects Controllers
Dynamic structural analysis
Error analysis
geometric control
multi‐rotor UAV
nonlinear control
Nonlinear dynamics
Nonlinear filters
nonlinear filters on SO$$ \mathrm{SO}
quadrotors
Rotors
Tracking control
Trajectory analysis
Trajectory control
Unmanned aerial vehicles
title Geometric tracking control of a multi‐rotor UAV for partially known trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20tracking%20control%20of%20a%20multi%E2%80%90rotor%20UAV%20for%20partially%20known%20trajectories&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Kumar,%20Yogesh&rft.date=2024-09-25&rft.volume=34&rft.issue=14&rft.spage=9572&rft.epage=9595&rft.pages=9572-9595&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7476&rft_dat=%3Cproquest_cross%3E3092152732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092152732&rft_id=info:pmid/&rfr_iscdi=true