A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems

With the continuous expansion of the scale of the industrial Internet, edge computing has become an indispensable part of the industrial Internet. In order to quickly handle the massive computation tasks of production devices and monitoring devices in industrial production and ensure the safety and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2024-08, Vol.27 (5), p.5981-5993
Hauptverfasser: Dong, Jiadong, Chen, Lin, Zheng, Chunxiang, Pan, Kai, Guo, Qinghu, Wu, Shunfeng, Wang, Zhaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5993
container_issue 5
container_start_page 5981
container_title Cluster computing
container_volume 27
creator Dong, Jiadong
Chen, Lin
Zheng, Chunxiang
Pan, Kai
Guo, Qinghu
Wu, Shunfeng
Wang, Zhaoxiang
description With the continuous expansion of the scale of the industrial Internet, edge computing has become an indispensable part of the industrial Internet. In order to quickly handle the massive computation tasks of production devices and monitoring devices in industrial production and ensure the safety and efficiency of industrial production. This article considers the Joint Task Offloading and Resource Allocation (JTORA) optimization problem, which is measured by the weighted sum of task completion time and energy consumption, and includes the joint optimization of task offloading decision, uplink power allocation, and computing resource allocation. Also further decompose the JTORA problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem for hierarchical optimization. This paper adopts Deep Reinforcement Learning (DRL) algorithm to solve the RA problem and a heuristic algorithm for the TO problem. Simulation experimental results show that the proposed JTORA optimization scheme can significantly reduce the production time and device energy consumption in industrial production over traditional approaches.
doi_str_mv 10.1007/s10586-024-04276-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092151961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092151961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-de95e6092177ca5e6ae40715d57550288136ebfde9562fe5e5226c5ecd99db3d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8Bz9V8NE17XBa_QPCi55BNprtZ26Ym6aH-elMrePM0A_O878y8WXZN8C3BWNwFgnlV5pgWOS6oKPPpJFsRLlgueMFOU8_SWFRcnGcXIRwxxrWg9SobN-hgwSuvD1arFrkh2s5-qWhdj9QweKf0ATXOI9ubMURvExRV-ECuaVqnjO33SPUGeQhu9BqQalunF73tEZg9IO26YYwzGaYQoQuX2Vmj2gBXv3WdvT_cv22f8pfXx-ft5iXXVOCYG6g5lLimRAitUqugwIJwwwXnmFYVYSXsmhkraQMcOKWl5qBNXZsdM2yd3Sy-6Y_PEUKUx3Rkn1ZKNttyUpckUXShtHcheGjk4G2n_CQJlnO8colXpnjlT7xySiK2iEKC-z34P-t_VN-XwYDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092151961</pqid></control><display><type>article</type><title>A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems</title><source>SpringerNature Journals</source><creator>Dong, Jiadong ; Chen, Lin ; Zheng, Chunxiang ; Pan, Kai ; Guo, Qinghu ; Wu, Shunfeng ; Wang, Zhaoxiang</creator><creatorcontrib>Dong, Jiadong ; Chen, Lin ; Zheng, Chunxiang ; Pan, Kai ; Guo, Qinghu ; Wu, Shunfeng ; Wang, Zhaoxiang</creatorcontrib><description>With the continuous expansion of the scale of the industrial Internet, edge computing has become an indispensable part of the industrial Internet. In order to quickly handle the massive computation tasks of production devices and monitoring devices in industrial production and ensure the safety and efficiency of industrial production. This article considers the Joint Task Offloading and Resource Allocation (JTORA) optimization problem, which is measured by the weighted sum of task completion time and energy consumption, and includes the joint optimization of task offloading decision, uplink power allocation, and computing resource allocation. Also further decompose the JTORA problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem for hierarchical optimization. This paper adopts Deep Reinforcement Learning (DRL) algorithm to solve the RA problem and a heuristic algorithm for the TO problem. Simulation experimental results show that the proposed JTORA optimization scheme can significantly reduce the production time and device energy consumption in industrial production over traditional approaches.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04276-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bandwidths ; Cloud computing ; Completion time ; Computation offloading ; Computer Communication Networks ; Computer Science ; Computing time ; Data analysis ; Edge computing ; Efficiency ; Energy consumption ; Heuristic methods ; Industrial production ; Industry 4.0 ; Information technology ; Internet ; Internet of Things ; Machine learning ; Operating Systems ; Optimization ; Processor Architectures ; Resource allocation ; Resource management ; Time measurement</subject><ispartof>Cluster computing, 2024-08, Vol.27 (5), p.5981-5993</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-de95e6092177ca5e6ae40715d57550288136ebfde9562fe5e5226c5ecd99db3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04276-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04276-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids></links><search><creatorcontrib>Dong, Jiadong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zheng, Chunxiang</creatorcontrib><creatorcontrib>Pan, Kai</creatorcontrib><creatorcontrib>Guo, Qinghu</creatorcontrib><creatorcontrib>Wu, Shunfeng</creatorcontrib><creatorcontrib>Wang, Zhaoxiang</creatorcontrib><title>A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>With the continuous expansion of the scale of the industrial Internet, edge computing has become an indispensable part of the industrial Internet. In order to quickly handle the massive computation tasks of production devices and monitoring devices in industrial production and ensure the safety and efficiency of industrial production. This article considers the Joint Task Offloading and Resource Allocation (JTORA) optimization problem, which is measured by the weighted sum of task completion time and energy consumption, and includes the joint optimization of task offloading decision, uplink power allocation, and computing resource allocation. Also further decompose the JTORA problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem for hierarchical optimization. This paper adopts Deep Reinforcement Learning (DRL) algorithm to solve the RA problem and a heuristic algorithm for the TO problem. Simulation experimental results show that the proposed JTORA optimization scheme can significantly reduce the production time and device energy consumption in industrial production over traditional approaches.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Cloud computing</subject><subject>Completion time</subject><subject>Computation offloading</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Edge computing</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Heuristic methods</subject><subject>Industrial production</subject><subject>Industry 4.0</subject><subject>Information technology</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Time measurement</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8Bz9V8NE17XBa_QPCi55BNprtZ26Ym6aH-elMrePM0A_O878y8WXZN8C3BWNwFgnlV5pgWOS6oKPPpJFsRLlgueMFOU8_SWFRcnGcXIRwxxrWg9SobN-hgwSuvD1arFrkh2s5-qWhdj9QweKf0ATXOI9ubMURvExRV-ECuaVqnjO33SPUGeQhu9BqQalunF73tEZg9IO26YYwzGaYQoQuX2Vmj2gBXv3WdvT_cv22f8pfXx-ft5iXXVOCYG6g5lLimRAitUqugwIJwwwXnmFYVYSXsmhkraQMcOKWl5qBNXZsdM2yd3Sy-6Y_PEUKUx3Rkn1ZKNttyUpckUXShtHcheGjk4G2n_CQJlnO8colXpnjlT7xySiK2iEKC-z34P-t_VN-XwYDc</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Dong, Jiadong</creator><creator>Chen, Lin</creator><creator>Zheng, Chunxiang</creator><creator>Pan, Kai</creator><creator>Guo, Qinghu</creator><creator>Wu, Shunfeng</creator><creator>Wang, Zhaoxiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240801</creationdate><title>A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems</title><author>Dong, Jiadong ; Chen, Lin ; Zheng, Chunxiang ; Pan, Kai ; Guo, Qinghu ; Wu, Shunfeng ; Wang, Zhaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-de95e6092177ca5e6ae40715d57550288136ebfde9562fe5e5226c5ecd99db3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Cloud computing</topic><topic>Completion time</topic><topic>Computation offloading</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Edge computing</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Heuristic methods</topic><topic>Industrial production</topic><topic>Industry 4.0</topic><topic>Information technology</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jiadong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zheng, Chunxiang</creatorcontrib><creatorcontrib>Pan, Kai</creatorcontrib><creatorcontrib>Guo, Qinghu</creatorcontrib><creatorcontrib>Wu, Shunfeng</creatorcontrib><creatorcontrib>Wang, Zhaoxiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jiadong</au><au>Chen, Lin</au><au>Zheng, Chunxiang</au><au>Pan, Kai</au><au>Guo, Qinghu</au><au>Wu, Shunfeng</au><au>Wang, Zhaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>27</volume><issue>5</issue><spage>5981</spage><epage>5993</epage><pages>5981-5993</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>With the continuous expansion of the scale of the industrial Internet, edge computing has become an indispensable part of the industrial Internet. In order to quickly handle the massive computation tasks of production devices and monitoring devices in industrial production and ensure the safety and efficiency of industrial production. This article considers the Joint Task Offloading and Resource Allocation (JTORA) optimization problem, which is measured by the weighted sum of task completion time and energy consumption, and includes the joint optimization of task offloading decision, uplink power allocation, and computing resource allocation. Also further decompose the JTORA problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem for hierarchical optimization. This paper adopts Deep Reinforcement Learning (DRL) algorithm to solve the RA problem and a heuristic algorithm for the TO problem. Simulation experimental results show that the proposed JTORA optimization scheme can significantly reduce the production time and device energy consumption in industrial production over traditional approaches.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04276-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2024-08, Vol.27 (5), p.5981-5993
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_3092151961
source SpringerNature Journals
subjects Algorithms
Bandwidths
Cloud computing
Completion time
Computation offloading
Computer Communication Networks
Computer Science
Computing time
Data analysis
Edge computing
Efficiency
Energy consumption
Heuristic methods
Industrial production
Industry 4.0
Information technology
Internet
Internet of Things
Machine learning
Operating Systems
Optimization
Processor Architectures
Resource allocation
Resource management
Time measurement
title A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hierarchical%20optimization%20approach%20for%20industrial%20task%20offloading%20and%20resource%20allocation%20in%20edge%20computing%20systems&rft.jtitle=Cluster%20computing&rft.au=Dong,%20Jiadong&rft.date=2024-08-01&rft.volume=27&rft.issue=5&rft.spage=5981&rft.epage=5993&rft.pages=5981-5993&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04276-y&rft_dat=%3Cproquest_cross%3E3092151961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092151961&rft_id=info:pmid/&rfr_iscdi=true