Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress

Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant growth regulation 2024-09, Vol.43 (9), p.3088-3104
Hauptverfasser: Nizam, Ashifa, Thattantavide, Anju, Kumar, Ajay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3104
container_issue 9
container_start_page 3088
container_title Journal of plant growth regulation
container_volume 43
creator Nizam, Ashifa
Thattantavide, Anju
Kumar, Ajay
description Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for K. candel (11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while R. mucronata (4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the K. candel roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time, R. mucronata showed comparatively higher lignin content (101.4–149.6 µg/mg) than K. candel (40.6–145.1 µg/mg) . Total pectin concentration increased after 60 days in K. candel at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in R. mucronata . A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in R. mucronata compared to K. candel . Total polyphenol content was higher in R. mucronata (308.1–731.1 µg GAE/mg DW) than in K. candel (43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz CAD , HCT , C3H , COMT and peroxidase was observed in R. mucronata at 5 ppt salinity 60 days after treatment . The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.
doi_str_mv 10.1007/s00344-023-11021-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092148453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092148453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAq6vJZrfZHKVqFVos1uIxhN3JkrIma7Ittkd_udlW8OZlhpn53ht4CF1SckMJ4beBEJZlCUlZQilJabI7QgOasTwpKOHHaEB4XPJc5KfoLIQVITQOfIC-J2ABP3y1HkIwzuK56jrw9hpPTW2NxffQumC6_qRshV-d6_AYmga_q1hmrjLalGp_dzrSG2hca2yNZ8rW3m0Az71rVb1uIOClrcDjhWqMNd0WL7r-6zk60aoJcPHbh2j5-PA2fkqmL5Pn8d00KRkVXVIJoKLUhJKcq5RmdMQKnoqUlanWIuW8VFCwUhRsVOmeKGgBoPMCxIgSodkQXR18W-8-1xA6uXJrb-NLyYiIjkWWs0ilB6r0LgQPWrbefCi_lZTIPmt5yFrGrOU-a7mLInYQhQjbGvyf9T-qH6vJgyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092148453</pqid></control><display><type>article</type><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><source>SpringerNature Journals</source><creator>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</creator><creatorcontrib>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</creatorcontrib><description>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for K. candel (11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while R. mucronata (4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the K. candel roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time, R. mucronata showed comparatively higher lignin content (101.4–149.6 µg/mg) than K. candel (40.6–145.1 µg/mg) . Total pectin concentration increased after 60 days in K. candel at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in R. mucronata . A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in R. mucronata compared to K. candel . Total polyphenol content was higher in R. mucronata (308.1–731.1 µg GAE/mg DW) than in K. candel (43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz CAD , HCT , C3H , COMT and peroxidase was observed in R. mucronata at 5 ppt salinity 60 days after treatment . The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</description><identifier>ISSN: 0721-7595</identifier><identifier>EISSN: 1435-8107</identifier><identifier>DOI: 10.1007/s00344-023-11021-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Biosynthesis ; Carbohydrates ; Cell walls ; Cellulose ; Deposition ; Fresh water ; Gene expression ; Hemicellulose ; Hypoxia ; Life Sciences ; Lignin ; Mangroves ; Pectin ; Peroxidase ; Plant Anatomy/Development ; Plant Physiology ; Plant Sciences ; Propagules ; Salinity ; Salinity effects ; Salinity tolerance ; Salts ; Ultrafiltration</subject><ispartof>Journal of plant growth regulation, 2024-09, Vol.43 (9), p.3088-3104</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</citedby><cites>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</cites><orcidid>0000-0001-7436-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00344-023-11021-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00344-023-11021-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nizam, Ashifa</creatorcontrib><creatorcontrib>Thattantavide, Anju</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><title>Journal of plant growth regulation</title><addtitle>J Plant Growth Regul</addtitle><description>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for K. candel (11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while R. mucronata (4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the K. candel roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time, R. mucronata showed comparatively higher lignin content (101.4–149.6 µg/mg) than K. candel (40.6–145.1 µg/mg) . Total pectin concentration increased after 60 days in K. candel at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in R. mucronata . A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in R. mucronata compared to K. candel . Total polyphenol content was higher in R. mucronata (308.1–731.1 µg GAE/mg DW) than in K. candel (43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz CAD , HCT , C3H , COMT and peroxidase was observed in R. mucronata at 5 ppt salinity 60 days after treatment . The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Deposition</subject><subject>Fresh water</subject><subject>Gene expression</subject><subject>Hemicellulose</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Mangroves</subject><subject>Pectin</subject><subject>Peroxidase</subject><subject>Plant Anatomy/Development</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Propagules</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Ultrafiltration</subject><issn>0721-7595</issn><issn>1435-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPAq6vJZrfZHKVqFVos1uIxhN3JkrIma7Ittkd_udlW8OZlhpn53ht4CF1SckMJ4beBEJZlCUlZQilJabI7QgOasTwpKOHHaEB4XPJc5KfoLIQVITQOfIC-J2ABP3y1HkIwzuK56jrw9hpPTW2NxffQumC6_qRshV-d6_AYmga_q1hmrjLalGp_dzrSG2hca2yNZ8rW3m0Az71rVb1uIOClrcDjhWqMNd0WL7r-6zk60aoJcPHbh2j5-PA2fkqmL5Pn8d00KRkVXVIJoKLUhJKcq5RmdMQKnoqUlanWIuW8VFCwUhRsVOmeKGgBoPMCxIgSodkQXR18W-8-1xA6uXJrb-NLyYiIjkWWs0ilB6r0LgQPWrbefCi_lZTIPmt5yFrGrOU-a7mLInYQhQjbGvyf9T-qH6vJgyc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Nizam, Ashifa</creator><creator>Thattantavide, Anju</creator><creator>Kumar, Ajay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7436-5000</orcidid></search><sort><creationdate>20240901</creationdate><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><author>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Deposition</topic><topic>Fresh water</topic><topic>Gene expression</topic><topic>Hemicellulose</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Mangroves</topic><topic>Pectin</topic><topic>Peroxidase</topic><topic>Plant Anatomy/Development</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Propagules</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nizam, Ashifa</creatorcontrib><creatorcontrib>Thattantavide, Anju</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of plant growth regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nizam, Ashifa</au><au>Thattantavide, Anju</au><au>Kumar, Ajay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</atitle><jtitle>Journal of plant growth regulation</jtitle><stitle>J Plant Growth Regul</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>3088</spage><epage>3104</epage><pages>3088-3104</pages><issn>0721-7595</issn><eissn>1435-8107</eissn><abstract>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for K. candel (11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while R. mucronata (4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the K. candel roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time, R. mucronata showed comparatively higher lignin content (101.4–149.6 µg/mg) than K. candel (40.6–145.1 µg/mg) . Total pectin concentration increased after 60 days in K. candel at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in R. mucronata . A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in R. mucronata compared to K. candel . Total polyphenol content was higher in R. mucronata (308.1–731.1 µg GAE/mg DW) than in K. candel (43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz CAD , HCT , C3H , COMT and peroxidase was observed in R. mucronata at 5 ppt salinity 60 days after treatment . The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00344-023-11021-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7436-5000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-7595
ispartof Journal of plant growth regulation, 2024-09, Vol.43 (9), p.3088-3104
issn 0721-7595
1435-8107
language eng
recordid cdi_proquest_journals_3092148453
source SpringerNature Journals
subjects Agriculture
Biomedical and Life Sciences
Biosynthesis
Carbohydrates
Cell walls
Cellulose
Deposition
Fresh water
Gene expression
Hemicellulose
Hypoxia
Life Sciences
Lignin
Mangroves
Pectin
Peroxidase
Plant Anatomy/Development
Plant Physiology
Plant Sciences
Propagules
Salinity
Salinity effects
Salinity tolerance
Salts
Ultrafiltration
title Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Pattern,%20Lignin%20Deposition%20and%20Root%20Cell%20Wall%20Modification%20of%20Developing%20Mangrove%20Propagules%20Under%20Salinity%20Stress&rft.jtitle=Journal%20of%20plant%20growth%20regulation&rft.au=Nizam,%20Ashifa&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=3088&rft.epage=3104&rft.pages=3088-3104&rft.issn=0721-7595&rft.eissn=1435-8107&rft_id=info:doi/10.1007/s00344-023-11021-z&rft_dat=%3Cproquest_cross%3E3092148453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092148453&rft_id=info:pmid/&rfr_iscdi=true