Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress
Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely Kandelia candel (L.) Druce and Rhizophora mucronata Lam., well known for their ultrafiltration capability, responded to different salinity l...
Gespeichert in:
Veröffentlicht in: | Journal of plant growth regulation 2024-09, Vol.43 (9), p.3088-3104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3104 |
---|---|
container_issue | 9 |
container_start_page | 3088 |
container_title | Journal of plant growth regulation |
container_volume | 43 |
creator | Nizam, Ashifa Thattantavide, Anju Kumar, Ajay |
description | Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely
Kandelia candel
(L.) Druce and
Rhizophora mucronata
Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for
K. candel
(11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while
R. mucronata
(4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the
K. candel
roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time,
R. mucronata
showed comparatively higher lignin content (101.4–149.6 µg/mg) than
K. candel
(40.6–145.1 µg/mg)
.
Total pectin concentration increased after 60 days in
K. candel
at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in
R. mucronata
. A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in
R. mucronata
compared to
K. candel
. Total polyphenol content was higher in
R. mucronata
(308.1–731.1 µg GAE/mg DW) than in
K. candel
(43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz
CAD
,
HCT
,
C3H
,
COMT
and peroxidase was observed in
R. mucronata
at 5 ppt salinity 60 days after treatment
.
The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms. |
doi_str_mv | 10.1007/s00344-023-11021-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092148453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092148453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAq6vJZrfZHKVqFVos1uIxhN3JkrIma7Ittkd_udlW8OZlhpn53ht4CF1SckMJ4beBEJZlCUlZQilJabI7QgOasTwpKOHHaEB4XPJc5KfoLIQVITQOfIC-J2ABP3y1HkIwzuK56jrw9hpPTW2NxffQumC6_qRshV-d6_AYmga_q1hmrjLalGp_dzrSG2hca2yNZ8rW3m0Az71rVb1uIOClrcDjhWqMNd0WL7r-6zk60aoJcPHbh2j5-PA2fkqmL5Pn8d00KRkVXVIJoKLUhJKcq5RmdMQKnoqUlanWIuW8VFCwUhRsVOmeKGgBoPMCxIgSodkQXR18W-8-1xA6uXJrb-NLyYiIjkWWs0ilB6r0LgQPWrbefCi_lZTIPmt5yFrGrOU-a7mLInYQhQjbGvyf9T-qH6vJgyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092148453</pqid></control><display><type>article</type><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><source>SpringerNature Journals</source><creator>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</creator><creatorcontrib>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</creatorcontrib><description>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely
Kandelia candel
(L.) Druce and
Rhizophora mucronata
Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for
K. candel
(11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while
R. mucronata
(4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the
K. candel
roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time,
R. mucronata
showed comparatively higher lignin content (101.4–149.6 µg/mg) than
K. candel
(40.6–145.1 µg/mg)
.
Total pectin concentration increased after 60 days in
K. candel
at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in
R. mucronata
. A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in
R. mucronata
compared to
K. candel
. Total polyphenol content was higher in
R. mucronata
(308.1–731.1 µg GAE/mg DW) than in
K. candel
(43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz
CAD
,
HCT
,
C3H
,
COMT
and peroxidase was observed in
R. mucronata
at 5 ppt salinity 60 days after treatment
.
The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</description><identifier>ISSN: 0721-7595</identifier><identifier>EISSN: 1435-8107</identifier><identifier>DOI: 10.1007/s00344-023-11021-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Biosynthesis ; Carbohydrates ; Cell walls ; Cellulose ; Deposition ; Fresh water ; Gene expression ; Hemicellulose ; Hypoxia ; Life Sciences ; Lignin ; Mangroves ; Pectin ; Peroxidase ; Plant Anatomy/Development ; Plant Physiology ; Plant Sciences ; Propagules ; Salinity ; Salinity effects ; Salinity tolerance ; Salts ; Ultrafiltration</subject><ispartof>Journal of plant growth regulation, 2024-09, Vol.43 (9), p.3088-3104</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</citedby><cites>FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</cites><orcidid>0000-0001-7436-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00344-023-11021-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00344-023-11021-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nizam, Ashifa</creatorcontrib><creatorcontrib>Thattantavide, Anju</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><title>Journal of plant growth regulation</title><addtitle>J Plant Growth Regul</addtitle><description>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely
Kandelia candel
(L.) Druce and
Rhizophora mucronata
Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for
K. candel
(11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while
R. mucronata
(4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the
K. candel
roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time,
R. mucronata
showed comparatively higher lignin content (101.4–149.6 µg/mg) than
K. candel
(40.6–145.1 µg/mg)
.
Total pectin concentration increased after 60 days in
K. candel
at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in
R. mucronata
. A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in
R. mucronata
compared to
K. candel
. Total polyphenol content was higher in
R. mucronata
(308.1–731.1 µg GAE/mg DW) than in
K. candel
(43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz
CAD
,
HCT
,
C3H
,
COMT
and peroxidase was observed in
R. mucronata
at 5 ppt salinity 60 days after treatment
.
The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Deposition</subject><subject>Fresh water</subject><subject>Gene expression</subject><subject>Hemicellulose</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Mangroves</subject><subject>Pectin</subject><subject>Peroxidase</subject><subject>Plant Anatomy/Development</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Propagules</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Ultrafiltration</subject><issn>0721-7595</issn><issn>1435-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPAq6vJZrfZHKVqFVos1uIxhN3JkrIma7Ittkd_udlW8OZlhpn53ht4CF1SckMJ4beBEJZlCUlZQilJabI7QgOasTwpKOHHaEB4XPJc5KfoLIQVITQOfIC-J2ABP3y1HkIwzuK56jrw9hpPTW2NxffQumC6_qRshV-d6_AYmga_q1hmrjLalGp_dzrSG2hca2yNZ8rW3m0Az71rVb1uIOClrcDjhWqMNd0WL7r-6zk60aoJcPHbh2j5-PA2fkqmL5Pn8d00KRkVXVIJoKLUhJKcq5RmdMQKnoqUlanWIuW8VFCwUhRsVOmeKGgBoPMCxIgSodkQXR18W-8-1xA6uXJrb-NLyYiIjkWWs0ilB6r0LgQPWrbefCi_lZTIPmt5yFrGrOU-a7mLInYQhQjbGvyf9T-qH6vJgyc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Nizam, Ashifa</creator><creator>Thattantavide, Anju</creator><creator>Kumar, Ajay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7436-5000</orcidid></search><sort><creationdate>20240901</creationdate><title>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</title><author>Nizam, Ashifa ; Thattantavide, Anju ; Kumar, Ajay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9e19cf01057a214163872923c2ff9277cae83c9836df7a21818eef58e96109f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Deposition</topic><topic>Fresh water</topic><topic>Gene expression</topic><topic>Hemicellulose</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Mangroves</topic><topic>Pectin</topic><topic>Peroxidase</topic><topic>Plant Anatomy/Development</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Propagules</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nizam, Ashifa</creatorcontrib><creatorcontrib>Thattantavide, Anju</creatorcontrib><creatorcontrib>Kumar, Ajay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of plant growth regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nizam, Ashifa</au><au>Thattantavide, Anju</au><au>Kumar, Ajay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress</atitle><jtitle>Journal of plant growth regulation</jtitle><stitle>J Plant Growth Regul</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>3088</spage><epage>3104</epage><pages>3088-3104</pages><issn>0721-7595</issn><eissn>1435-8107</eissn><abstract>Mangroves have unique adaptations that help them survive in highly saline and hypoxic environments. The present study examines how two mangrove species, namely
Kandelia candel
(L.) Druce and
Rhizophora mucronata
Lam., well known for their ultrafiltration capability, responded to different salinity levels. We have conducted histochemical, biochemical and gene expression analyses of lignin and cell wall components from the two non-salt-secreting mangrove species treated with different salinity gradients. Root length decreased at higher salinity treatments for
K. candel
(11.7–13.8 cm in freshwater; 5.7–6.7 cm at 20 ppt), while
R. mucronata
(4.9–6.4 cm in freshwater; 5.5–9.4 cm at 35 ppt) showed no significant change. The rate of lignin deposition near the vascular bundles varied from freshwater to salt treatments and between the species. Overall lignin content in the
K. candel
roots increased at higher salinity (40.6–70.6 µg/mg at freshwater to 53.9–145.1 µg/mg at 20 ppt). At the same time,
R. mucronata
showed comparatively higher lignin content (101.4–149.6 µg/mg) than
K. candel
(40.6–145.1 µg/mg)
.
Total pectin concentration increased after 60 days in
K. candel
at freshwater (55.7–199.82 µg/mg) and salt treatments (90.0–210.5 µg/mg at 20 ppt). But pectin content decreased after 60 days of treatment in
R. mucronata
. A similar trend was observed for total carbohydrates and cellulose. Overall, hemicellulose concentration was low in
R. mucronata
compared to
K. candel
. Total polyphenol content was higher in
R. mucronata
(308.1–731.1 µg GAE/mg DW) than in
K. candel
(43.1–400.4 µg GAE/mg DW). Higher gene expression of lignin biosynthesis genes viz
CAD
,
HCT
,
C3H
,
COMT
and peroxidase was observed in
R. mucronata
at 5 ppt salinity 60 days after treatment
.
The results of this study will help explain the role of root lignification in mangrove salinity tolerance mechanisms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00344-023-11021-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7436-5000</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7595 |
ispartof | Journal of plant growth regulation, 2024-09, Vol.43 (9), p.3088-3104 |
issn | 0721-7595 1435-8107 |
language | eng |
recordid | cdi_proquest_journals_3092148453 |
source | SpringerNature Journals |
subjects | Agriculture Biomedical and Life Sciences Biosynthesis Carbohydrates Cell walls Cellulose Deposition Fresh water Gene expression Hemicellulose Hypoxia Life Sciences Lignin Mangroves Pectin Peroxidase Plant Anatomy/Development Plant Physiology Plant Sciences Propagules Salinity Salinity effects Salinity tolerance Salts Ultrafiltration |
title | Gene Expression Pattern, Lignin Deposition and Root Cell Wall Modification of Developing Mangrove Propagules Under Salinity Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20Pattern,%20Lignin%20Deposition%20and%20Root%20Cell%20Wall%20Modification%20of%20Developing%20Mangrove%20Propagules%20Under%20Salinity%20Stress&rft.jtitle=Journal%20of%20plant%20growth%20regulation&rft.au=Nizam,%20Ashifa&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=3088&rft.epage=3104&rft.pages=3088-3104&rft.issn=0721-7595&rft.eissn=1435-8107&rft_id=info:doi/10.1007/s00344-023-11021-z&rft_dat=%3Cproquest_cross%3E3092148453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092148453&rft_id=info:pmid/&rfr_iscdi=true |