Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions

In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-09, Vol.112 (17), p.15109-15132
Hauptverfasser: Sin, Myong-Hyok, Sin, Cholmin, Kim, Hyang-Yong, An, Yong-Min, Zhang, Kum-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15132
container_issue 17
container_start_page 15109
container_title Nonlinear dynamics
container_volume 112
creator Sin, Myong-Hyok
Sin, Cholmin
Kim, Hyang-Yong
An, Yong-Min
Zhang, Kum-Song
description In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.
doi_str_mv 10.1007/s11071-024-09703-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092148444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092148444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</originalsourceid><addsrcrecordid>eNp9kE1vFSEUQInRxGf1D7gicT3tZcA3sNTGfiRN2kVNuiMwXHxUZngCEzN_xN8r770m7lxBwjmX3EPIRwbnDGC4KIzBwDroRQdqAN7JV2TDPg-867fq6TXZgDo-wdNb8q6UZwDgPcgN-fNgspmwYqbB4VyDD6OpIc00eeqzGQ93E7uUXUPKWipOhf4OdUdrmJA6jGYt1JqCjjbL0N1qc3AHPeW6S3PKk4n0K-Y5LTEGuk9xndMUTCzUzI7amMafdL_EgtQv8_HD8p688Q3ADy_nGfl-9e3x8qa7u7--vfxy1439ALXrB84GroQ1yLxzio_WWKtQWug5SL8VCrkct73jkg1eKLsVwJR06I3zzPEz8uk0d5_TrwVL1c9pyW3honlLxoQUQjSqP1FjTqVk9Hqfw2TyqhnoQ3996q9bf33sr2WT-EkqDZ5_YP43-j_WX9BrjNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092148444</pqid></control><display><type>article</type><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</creator><creatorcontrib>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</creatorcontrib><description>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09703-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Effectiveness ; Engineering ; Fractional calculus ; Identification methods ; Laplace transforms ; Mechanical Engineering ; Methods ; Orthogonality ; Parameter identification ; Polynomials ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-09, Vol.112 (17), p.15109-15132</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09703-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09703-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sin, Myong-Hyok</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><creatorcontrib>Kim, Hyang-Yong</creatorcontrib><creatorcontrib>An, Yong-Min</creatorcontrib><creatorcontrib>Zhang, Kum-Song</creatorcontrib><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Identification methods</subject><subject>Laplace transforms</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Orthogonality</subject><subject>Parameter identification</subject><subject>Polynomials</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vFSEUQInRxGf1D7gicT3tZcA3sNTGfiRN2kVNuiMwXHxUZngCEzN_xN8r770m7lxBwjmX3EPIRwbnDGC4KIzBwDroRQdqAN7JV2TDPg-867fq6TXZgDo-wdNb8q6UZwDgPcgN-fNgspmwYqbB4VyDD6OpIc00eeqzGQ93E7uUXUPKWipOhf4OdUdrmJA6jGYt1JqCjjbL0N1qc3AHPeW6S3PKk4n0K-Y5LTEGuk9xndMUTCzUzI7amMafdL_EgtQv8_HD8p688Q3ADy_nGfl-9e3x8qa7u7--vfxy1439ALXrB84GroQ1yLxzio_WWKtQWug5SL8VCrkct73jkg1eKLsVwJR06I3zzPEz8uk0d5_TrwVL1c9pyW3honlLxoQUQjSqP1FjTqVk9Hqfw2TyqhnoQ3996q9bf33sr2WT-EkqDZ5_YP43-j_WX9BrjNU</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Sin, Myong-Hyok</creator><creator>Sin, Cholmin</creator><creator>Kim, Hyang-Yong</creator><creator>An, Yong-Min</creator><creator>Zhang, Kum-Song</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><author>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Identification methods</topic><topic>Laplace transforms</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Orthogonality</topic><topic>Parameter identification</topic><topic>Polynomials</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sin, Myong-Hyok</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><creatorcontrib>Kim, Hyang-Yong</creatorcontrib><creatorcontrib>An, Yong-Min</creatorcontrib><creatorcontrib>Zhang, Kum-Song</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sin, Myong-Hyok</au><au>Sin, Cholmin</au><au>Kim, Hyang-Yong</au><au>An, Yong-Min</au><au>Zhang, Kum-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>112</volume><issue>17</issue><spage>15109</spage><epage>15132</epage><pages>15109-15132</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09703-8</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-09, Vol.112 (17), p.15109-15132
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3092148444
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Effectiveness
Engineering
Fractional calculus
Identification methods
Laplace transforms
Mechanical Engineering
Methods
Orthogonality
Parameter identification
Polynomials
Vibration
title Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20identification%20of%20fractional-order%20systems%20with%20time%20delays%20based%20on%20a%20hybrid%20of%20orthonormal%20Bernoulli%20polynomials%20and%20block%20pulse%20functions&rft.jtitle=Nonlinear%20dynamics&rft.au=Sin,%20Myong-Hyok&rft.date=2024-09-01&rft.volume=112&rft.issue=17&rft.spage=15109&rft.epage=15132&rft.pages=15109-15132&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09703-8&rft_dat=%3Cproquest_cross%3E3092148444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092148444&rft_id=info:pmid/&rfr_iscdi=true