Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions
In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the e...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-09, Vol.112 (17), p.15109-15132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15132 |
---|---|
container_issue | 17 |
container_start_page | 15109 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Sin, Myong-Hyok Sin, Cholmin Kim, Hyang-Yong An, Yong-Min Zhang, Kum-Song |
description | In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs. |
doi_str_mv | 10.1007/s11071-024-09703-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092148444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092148444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</originalsourceid><addsrcrecordid>eNp9kE1vFSEUQInRxGf1D7gicT3tZcA3sNTGfiRN2kVNuiMwXHxUZngCEzN_xN8r770m7lxBwjmX3EPIRwbnDGC4KIzBwDroRQdqAN7JV2TDPg-867fq6TXZgDo-wdNb8q6UZwDgPcgN-fNgspmwYqbB4VyDD6OpIc00eeqzGQ93E7uUXUPKWipOhf4OdUdrmJA6jGYt1JqCjjbL0N1qc3AHPeW6S3PKk4n0K-Y5LTEGuk9xndMUTCzUzI7amMafdL_EgtQv8_HD8p688Q3ADy_nGfl-9e3x8qa7u7--vfxy1439ALXrB84GroQ1yLxzio_WWKtQWug5SL8VCrkct73jkg1eKLsVwJR06I3zzPEz8uk0d5_TrwVL1c9pyW3honlLxoQUQjSqP1FjTqVk9Hqfw2TyqhnoQ3996q9bf33sr2WT-EkqDZ5_YP43-j_WX9BrjNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092148444</pqid></control><display><type>article</type><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</creator><creatorcontrib>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</creatorcontrib><description>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09703-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Effectiveness ; Engineering ; Fractional calculus ; Identification methods ; Laplace transforms ; Mechanical Engineering ; Methods ; Orthogonality ; Parameter identification ; Polynomials ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-09, Vol.112 (17), p.15109-15132</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09703-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09703-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sin, Myong-Hyok</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><creatorcontrib>Kim, Hyang-Yong</creatorcontrib><creatorcontrib>An, Yong-Min</creatorcontrib><creatorcontrib>Zhang, Kum-Song</creatorcontrib><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Identification methods</subject><subject>Laplace transforms</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Orthogonality</subject><subject>Parameter identification</subject><subject>Polynomials</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vFSEUQInRxGf1D7gicT3tZcA3sNTGfiRN2kVNuiMwXHxUZngCEzN_xN8r770m7lxBwjmX3EPIRwbnDGC4KIzBwDroRQdqAN7JV2TDPg-867fq6TXZgDo-wdNb8q6UZwDgPcgN-fNgspmwYqbB4VyDD6OpIc00eeqzGQ93E7uUXUPKWipOhf4OdUdrmJA6jGYt1JqCjjbL0N1qc3AHPeW6S3PKk4n0K-Y5LTEGuk9xndMUTCzUzI7amMafdL_EgtQv8_HD8p688Q3ADy_nGfl-9e3x8qa7u7--vfxy1439ALXrB84GroQ1yLxzio_WWKtQWug5SL8VCrkct73jkg1eKLsVwJR06I3zzPEz8uk0d5_TrwVL1c9pyW3honlLxoQUQjSqP1FjTqVk9Hqfw2TyqhnoQ3996q9bf33sr2WT-EkqDZ5_YP43-j_WX9BrjNU</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Sin, Myong-Hyok</creator><creator>Sin, Cholmin</creator><creator>Kim, Hyang-Yong</creator><creator>An, Yong-Min</creator><creator>Zhang, Kum-Song</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</title><author>Sin, Myong-Hyok ; Sin, Cholmin ; Kim, Hyang-Yong ; An, Yong-Min ; Zhang, Kum-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-27317394bae1fdd93cbabb9e8b02308f649e38c62d3817f49b640198defadf1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Identification methods</topic><topic>Laplace transforms</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Orthogonality</topic><topic>Parameter identification</topic><topic>Polynomials</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sin, Myong-Hyok</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><creatorcontrib>Kim, Hyang-Yong</creatorcontrib><creatorcontrib>An, Yong-Min</creatorcontrib><creatorcontrib>Zhang, Kum-Song</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sin, Myong-Hyok</au><au>Sin, Cholmin</au><au>Kim, Hyang-Yong</au><au>An, Yong-Min</au><au>Zhang, Kum-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>112</volume><issue>17</issue><spage>15109</spage><epage>15132</epage><pages>15109-15132</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we present effective and efficient identification methods with a higher accuracy for fractional order system (FOS) with time delays and nonzero initial condition. We construct a new hybrid of orthonormal Bernoulli polynomials and block pulse functions (HOBPBPFs), and then derive the explicit representation for fractional integral operational matrix (FIOM) based on the HOBPBPFs via Laplace transformation. The orthogonality of polynomials gives us a higher accuracy of the proposed method. Based on it, new identification methods for FOS with input or state delay as well as nonzero initial condition are proposed. In particular, the variable least squares identification method for FOS with state delay using a hybrid seems to be the first within our knowledge. The effectiveness and efficiency of the proposed method is illustrated in several simulations via the comparison with methods using block pulse functions (BPFs) or a hybrid of Bernoulli polynomials and BPFs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09703-8</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-09, Vol.112 (17), p.15109-15132 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3092148444 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Automotive Engineering Classical Mechanics Control Dynamical Systems Effectiveness Engineering Fractional calculus Identification methods Laplace transforms Mechanical Engineering Methods Orthogonality Parameter identification Polynomials Vibration |
title | Parameter identification of fractional-order systems with time delays based on a hybrid of orthonormal Bernoulli polynomials and block pulse functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20identification%20of%20fractional-order%20systems%20with%20time%20delays%20based%20on%20a%20hybrid%20of%20orthonormal%20Bernoulli%20polynomials%20and%20block%20pulse%20functions&rft.jtitle=Nonlinear%20dynamics&rft.au=Sin,%20Myong-Hyok&rft.date=2024-09-01&rft.volume=112&rft.issue=17&rft.spage=15109&rft.epage=15132&rft.pages=15109-15132&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09703-8&rft_dat=%3Cproquest_cross%3E3092148444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092148444&rft_id=info:pmid/&rfr_iscdi=true |