A simple quadratic kernel for Token Jumping on surfaces

The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Cranston, Daniel W, Mühlenthaler, Moritz, Peyrille, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cranston, Daniel W
Mühlenthaler, Moritz
Peyrille, Benjamin
description The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size \(O(g^2 + gk + k^2)\), where \(g\) is the genus of the input graph and \(k\) is the size of the independent sets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3092075888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092075888</sourcerecordid><originalsourceid>FETCH-proquest_journals_30920758883</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcF-LE2LgUUcR19yXUqaQ_SZtp7q8LD-DqLb63EhkqdSjMEXEjcuZOSomnErVWmSgvwG6cBoI52Ve0i2ugp-hpgDZEqEJPHp5pnJx_Q_DAKba2Id6JdWsHpvzXrdjfb9X1UUwxzIl4qbuQov9SreQZZamNMeq_6wPnGjWF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092075888</pqid></control><display><type>article</type><title>A simple quadratic kernel for Token Jumping on surfaces</title><source>Free E- Journals</source><creator>Cranston, Daniel W ; Mühlenthaler, Moritz ; Peyrille, Benjamin</creator><creatorcontrib>Cranston, Daniel W ; Mühlenthaler, Moritz ; Peyrille, Benjamin</creatorcontrib><description>The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size \(O(g^2 + gk + k^2)\), where \(g\) is the genus of the input graph and \(k\) is the size of the independent sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Polynomials</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cranston, Daniel W</creatorcontrib><creatorcontrib>Mühlenthaler, Moritz</creatorcontrib><creatorcontrib>Peyrille, Benjamin</creatorcontrib><title>A simple quadratic kernel for Token Jumping on surfaces</title><title>arXiv.org</title><description>The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size \(O(g^2 + gk + k^2)\), where \(g\) is the genus of the input graph and \(k\) is the size of the independent sets.</description><subject>Algorithms</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcF-LE2LgUUcR19yXUqaQ_SZtp7q8LD-DqLb63EhkqdSjMEXEjcuZOSomnErVWmSgvwG6cBoI52Ve0i2ugp-hpgDZEqEJPHp5pnJx_Q_DAKba2Id6JdWsHpvzXrdjfb9X1UUwxzIl4qbuQov9SreQZZamNMeq_6wPnGjWF</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Cranston, Daniel W</creator><creator>Mühlenthaler, Moritz</creator><creator>Peyrille, Benjamin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240808</creationdate><title>A simple quadratic kernel for Token Jumping on surfaces</title><author>Cranston, Daniel W ; Mühlenthaler, Moritz ; Peyrille, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30920758883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Cranston, Daniel W</creatorcontrib><creatorcontrib>Mühlenthaler, Moritz</creatorcontrib><creatorcontrib>Peyrille, Benjamin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cranston, Daniel W</au><au>Mühlenthaler, Moritz</au><au>Peyrille, Benjamin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A simple quadratic kernel for Token Jumping on surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-08-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size \(O(g^2 + gk + k^2)\), where \(g\) is the genus of the input graph and \(k\) is the size of the independent sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3092075888
source Free E- Journals
subjects Algorithms
Polynomials
title A simple quadratic kernel for Token Jumping on surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20simple%20quadratic%20kernel%20for%20Token%20Jumping%20on%20surfaces&rft.jtitle=arXiv.org&rft.au=Cranston,%20Daniel%20W&rft.date=2024-08-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3092075888%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092075888&rft_id=info:pmid/&rfr_iscdi=true