A simple quadratic kernel for Token Jumping on surfaces

The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Cranston, Daniel W, Mühlenthaler, Moritz, Peyrille, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem \textsc{Token Jumping} asks whether, given a graph \(G\) and two independent sets of \emph{tokens} \(I\) and \(J\) of \(G\), we can transform \(I\) into \(J\) by changing the position of a single token in each step and having an independent set of tokens throughout. We show that there is a polynomial-time algorithm that, given an instance of \textsc{Token Jumping}, computes an equivalent instance of size \(O(g^2 + gk + k^2)\), where \(g\) is the genus of the input graph and \(k\) is the size of the independent sets.
ISSN:2331-8422