Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption

A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water and environment journal : WEJ 2024-08, Vol.38 (3), p.373-384
Hauptverfasser: Yimam, Solomon Ali, Kang, Joon Wun, Kassahun, Shimelis Kebede
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 3
container_start_page 373
container_title Water and environment journal : WEJ
container_volume 38
creator Yimam, Solomon Ali
Kang, Joon Wun
Kassahun, Shimelis Kebede
description A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection. Highlights The electrode gap was shown to have little effect on the formation of residual chlorine. The electrolysis time and electric potential have a direct impact on energy consumption. Artificial neural network models demonstrated superior capability for process prediction. A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.
doi_str_mv 10.1111/wej.12922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092072418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092072418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</originalsourceid><addsrcrecordid>eNp1UT1OwzAUjhBIlMLADSwxMbS1nSZpxqoqf6rEAmKMXPu5cUnsYDuqysQRuBM34SQ4DWLDy7Oevr-nL4ouCR6T8CY72I4JzSk9igYkm2ajNMnj47__LDmNzpzbYjzN8jQdRF_zpqkUZ14Z7ZCRSGkPG8s8CGTBNWELyLVWMg6oBl8aYSqz2SPnA8d5xZEHXmr11oJDTAvErFdSccUqpKG1h-F3xr5-f3yumQu6NeOl0oAqYFYrvUHeINN4Vat36EyVaAOLl5WxHayxRrS8C3jQBw02-POQrK2bbn0enUhWObj4ncPo-Wb5tLgbrR5v7xfz1YjTJKOjmCYS55BxwgBEmmJBBGGCpbBmEpI1ELLGcUKmeUJlIlNOMIE8FcCpJHks42F01euGRN25vtia1upgWcQ4pzijUzILqOsexa1xzoIsGqtqZvcFwUXXURE6Kg4dBeykx-5UBfv_gcXL8qFn_ADYq5wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092072418</pqid></control><display><type>article</type><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><source>Access via Wiley Online Library</source><creator>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</creator><creatorcontrib>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</creatorcontrib><description>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection. Highlights The electrode gap was shown to have little effect on the formation of residual chlorine. The electrolysis time and electric potential have a direct impact on energy consumption. Artificial neural network models demonstrated superior capability for process prediction. A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/wej.12922</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>ANN ; Artificial neural networks ; Chlorine ; Chlorine compounds ; Electric potential ; Electrodes ; Electrolysis ; electro‐oxidation ; Energy ; Energy consumption ; Industrial applications ; Machine learning ; Neural networks ; Optimization ; Residual chlorine ; Residual energy ; Response surface methodology ; RSM ; Saline solutions ; Sodium ; Sodium chloride</subject><ispartof>Water and environment journal : WEJ, 2024-08, Vol.38 (3), p.373-384</ispartof><rights>2024 CIWEM.</rights><rights>2024 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</cites><orcidid>0000-0001-9936-5859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fwej.12922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fwej.12922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yimam, Solomon Ali</creatorcontrib><creatorcontrib>Kang, Joon Wun</creatorcontrib><creatorcontrib>Kassahun, Shimelis Kebede</creatorcontrib><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><title>Water and environment journal : WEJ</title><description>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection. Highlights The electrode gap was shown to have little effect on the formation of residual chlorine. The electrolysis time and electric potential have a direct impact on energy consumption. Artificial neural network models demonstrated superior capability for process prediction. A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</description><subject>ANN</subject><subject>Artificial neural networks</subject><subject>Chlorine</subject><subject>Chlorine compounds</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>electro‐oxidation</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Residual chlorine</subject><subject>Residual energy</subject><subject>Response surface methodology</subject><subject>RSM</subject><subject>Saline solutions</subject><subject>Sodium</subject><subject>Sodium chloride</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UT1OwzAUjhBIlMLADSwxMbS1nSZpxqoqf6rEAmKMXPu5cUnsYDuqysQRuBM34SQ4DWLDy7Oevr-nL4ouCR6T8CY72I4JzSk9igYkm2ajNMnj47__LDmNzpzbYjzN8jQdRF_zpqkUZ14Z7ZCRSGkPG8s8CGTBNWELyLVWMg6oBl8aYSqz2SPnA8d5xZEHXmr11oJDTAvErFdSccUqpKG1h-F3xr5-f3yumQu6NeOl0oAqYFYrvUHeINN4Vat36EyVaAOLl5WxHayxRrS8C3jQBw02-POQrK2bbn0enUhWObj4ncPo-Wb5tLgbrR5v7xfz1YjTJKOjmCYS55BxwgBEmmJBBGGCpbBmEpI1ELLGcUKmeUJlIlNOMIE8FcCpJHks42F01euGRN25vtia1upgWcQ4pzijUzILqOsexa1xzoIsGqtqZvcFwUXXURE6Kg4dBeykx-5UBfv_gcXL8qFn_ADYq5wd</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Yimam, Solomon Ali</creator><creator>Kang, Joon Wun</creator><creator>Kassahun, Shimelis Kebede</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9936-5859</orcidid></search><sort><creationdate>202408</creationdate><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><author>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ANN</topic><topic>Artificial neural networks</topic><topic>Chlorine</topic><topic>Chlorine compounds</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>electro‐oxidation</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Residual chlorine</topic><topic>Residual energy</topic><topic>Response surface methodology</topic><topic>RSM</topic><topic>Saline solutions</topic><topic>Sodium</topic><topic>Sodium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yimam, Solomon Ali</creatorcontrib><creatorcontrib>Kang, Joon Wun</creatorcontrib><creatorcontrib>Kassahun, Shimelis Kebede</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yimam, Solomon Ali</au><au>Kang, Joon Wun</au><au>Kassahun, Shimelis Kebede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</atitle><jtitle>Water and environment journal : WEJ</jtitle><date>2024-08</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection. Highlights The electrode gap was shown to have little effect on the formation of residual chlorine. The electrolysis time and electric potential have a direct impact on energy consumption. Artificial neural network models demonstrated superior capability for process prediction. A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wej.12922</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9936-5859</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1747-6585
ispartof Water and environment journal : WEJ, 2024-08, Vol.38 (3), p.373-384
issn 1747-6585
1747-6593
language eng
recordid cdi_proquest_journals_3092072418
source Access via Wiley Online Library
subjects ANN
Artificial neural networks
Chlorine
Chlorine compounds
Electric potential
Electrodes
Electrolysis
electro‐oxidation
Energy
Energy consumption
Industrial applications
Machine learning
Neural networks
Optimization
Residual chlorine
Residual energy
Response surface methodology
RSM
Saline solutions
Sodium
Sodium chloride
title Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20integrated%20response%20surface%20methodology%20statistic%20techniques%20and%20artificial%20neural%20network%E2%80%90based%20machine%20learning%20to%20optimize%20residual%20chlorine%20production%20and%20energy%20consumption&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Yimam,%20Solomon%20Ali&rft.date=2024-08&rft.volume=38&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/wej.12922&rft_dat=%3Cproquest_cross%3E3092072418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092072418&rft_id=info:pmid/&rfr_iscdi=true