Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption
A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis...
Gespeichert in:
Veröffentlicht in: | Water and environment journal : WEJ 2024-08, Vol.38 (3), p.373-384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Water and environment journal : WEJ |
container_volume | 38 |
creator | Yimam, Solomon Ali Kang, Joon Wun Kassahun, Shimelis Kebede |
description | A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection.
Highlights
The electrode gap was shown to have little effect on the formation of residual chlorine.
The electrolysis time and electric potential have a direct impact on energy consumption.
Artificial neural network models demonstrated superior capability for process prediction.
A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine. |
doi_str_mv | 10.1111/wej.12922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3092072418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092072418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</originalsourceid><addsrcrecordid>eNp1UT1OwzAUjhBIlMLADSwxMbS1nSZpxqoqf6rEAmKMXPu5cUnsYDuqysQRuBM34SQ4DWLDy7Oevr-nL4ouCR6T8CY72I4JzSk9igYkm2ajNMnj47__LDmNzpzbYjzN8jQdRF_zpqkUZ14Z7ZCRSGkPG8s8CGTBNWELyLVWMg6oBl8aYSqz2SPnA8d5xZEHXmr11oJDTAvErFdSccUqpKG1h-F3xr5-f3yumQu6NeOl0oAqYFYrvUHeINN4Vat36EyVaAOLl5WxHayxRrS8C3jQBw02-POQrK2bbn0enUhWObj4ncPo-Wb5tLgbrR5v7xfz1YjTJKOjmCYS55BxwgBEmmJBBGGCpbBmEpI1ELLGcUKmeUJlIlNOMIE8FcCpJHks42F01euGRN25vtia1upgWcQ4pzijUzILqOsexa1xzoIsGqtqZvcFwUXXURE6Kg4dBeykx-5UBfv_gcXL8qFn_ADYq5wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092072418</pqid></control><display><type>article</type><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><source>Access via Wiley Online Library</source><creator>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</creator><creatorcontrib>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</creatorcontrib><description>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection.
Highlights
The electrode gap was shown to have little effect on the formation of residual chlorine.
The electrolysis time and electric potential have a direct impact on energy consumption.
Artificial neural network models demonstrated superior capability for process prediction.
A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/wej.12922</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>ANN ; Artificial neural networks ; Chlorine ; Chlorine compounds ; Electric potential ; Electrodes ; Electrolysis ; electro‐oxidation ; Energy ; Energy consumption ; Industrial applications ; Machine learning ; Neural networks ; Optimization ; Residual chlorine ; Residual energy ; Response surface methodology ; RSM ; Saline solutions ; Sodium ; Sodium chloride</subject><ispartof>Water and environment journal : WEJ, 2024-08, Vol.38 (3), p.373-384</ispartof><rights>2024 CIWEM.</rights><rights>2024 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</cites><orcidid>0000-0001-9936-5859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fwej.12922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fwej.12922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yimam, Solomon Ali</creatorcontrib><creatorcontrib>Kang, Joon Wun</creatorcontrib><creatorcontrib>Kassahun, Shimelis Kebede</creatorcontrib><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><title>Water and environment journal : WEJ</title><description>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection.
Highlights
The electrode gap was shown to have little effect on the formation of residual chlorine.
The electrolysis time and electric potential have a direct impact on energy consumption.
Artificial neural network models demonstrated superior capability for process prediction.
A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</description><subject>ANN</subject><subject>Artificial neural networks</subject><subject>Chlorine</subject><subject>Chlorine compounds</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>electro‐oxidation</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Residual chlorine</subject><subject>Residual energy</subject><subject>Response surface methodology</subject><subject>RSM</subject><subject>Saline solutions</subject><subject>Sodium</subject><subject>Sodium chloride</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UT1OwzAUjhBIlMLADSwxMbS1nSZpxqoqf6rEAmKMXPu5cUnsYDuqysQRuBM34SQ4DWLDy7Oevr-nL4ouCR6T8CY72I4JzSk9igYkm2ajNMnj47__LDmNzpzbYjzN8jQdRF_zpqkUZ14Z7ZCRSGkPG8s8CGTBNWELyLVWMg6oBl8aYSqz2SPnA8d5xZEHXmr11oJDTAvErFdSccUqpKG1h-F3xr5-f3yumQu6NeOl0oAqYFYrvUHeINN4Vat36EyVaAOLl5WxHayxRrS8C3jQBw02-POQrK2bbn0enUhWObj4ncPo-Wb5tLgbrR5v7xfz1YjTJKOjmCYS55BxwgBEmmJBBGGCpbBmEpI1ELLGcUKmeUJlIlNOMIE8FcCpJHks42F01euGRN25vtia1upgWcQ4pzijUzILqOsexa1xzoIsGqtqZvcFwUXXURE6Kg4dBeykx-5UBfv_gcXL8qFn_ADYq5wd</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Yimam, Solomon Ali</creator><creator>Kang, Joon Wun</creator><creator>Kassahun, Shimelis Kebede</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9936-5859</orcidid></search><sort><creationdate>202408</creationdate><title>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</title><author>Yimam, Solomon Ali ; Kang, Joon Wun ; Kassahun, Shimelis Kebede</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-325f09e7c1aeed660d1d1ada6ebafe5be11b03514952f5f6c101e96dec2f193f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ANN</topic><topic>Artificial neural networks</topic><topic>Chlorine</topic><topic>Chlorine compounds</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>electro‐oxidation</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Residual chlorine</topic><topic>Residual energy</topic><topic>Response surface methodology</topic><topic>RSM</topic><topic>Saline solutions</topic><topic>Sodium</topic><topic>Sodium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yimam, Solomon Ali</creatorcontrib><creatorcontrib>Kang, Joon Wun</creatorcontrib><creatorcontrib>Kassahun, Shimelis Kebede</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yimam, Solomon Ali</au><au>Kang, Joon Wun</au><au>Kassahun, Shimelis Kebede</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption</atitle><jtitle>Water and environment journal : WEJ</jtitle><date>2024-08</date><risdate>2024</risdate><volume>38</volume><issue>3</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>A multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection.
Highlights
The electrode gap was shown to have little effect on the formation of residual chlorine.
The electrolysis time and electric potential have a direct impact on energy consumption.
Artificial neural network models demonstrated superior capability for process prediction.
A maximum of 21.756 kWh/L of energy can be utilized for producing residual chlorine.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wej.12922</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9936-5859</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6585 |
ispartof | Water and environment journal : WEJ, 2024-08, Vol.38 (3), p.373-384 |
issn | 1747-6585 1747-6593 |
language | eng |
recordid | cdi_proquest_journals_3092072418 |
source | Access via Wiley Online Library |
subjects | ANN Artificial neural networks Chlorine Chlorine compounds Electric potential Electrodes Electrolysis electro‐oxidation Energy Energy consumption Industrial applications Machine learning Neural networks Optimization Residual chlorine Residual energy Response surface methodology RSM Saline solutions Sodium Sodium chloride |
title | Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20integrated%20response%20surface%20methodology%20statistic%20techniques%20and%20artificial%20neural%20network%E2%80%90based%20machine%20learning%20to%20optimize%20residual%20chlorine%20production%20and%20energy%20consumption&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Yimam,%20Solomon%20Ali&rft.date=2024-08&rft.volume=38&rft.issue=3&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/wej.12922&rft_dat=%3Cproquest_cross%3E3092072418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092072418&rft_id=info:pmid/&rfr_iscdi=true |