Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties
Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-cla...
Gespeichert in:
Veröffentlicht in: | International journal of engineering research in Africa (Print) 2022-03, Vol.59, p.57-75 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | |
container_start_page | 57 |
container_title | International journal of engineering research in Africa (Print) |
container_volume | 59 |
creator | Emmanuel, Ajisegiri Adediran, Adeolu Adesoji Owa, Adebayo Felix Akinwande, Abayomi Adewale Ademati, Akeem Oladele Balogun, Oluwatosin Abiodun Adesina, Olanrewaju Seun Olorunfemi, Bayode Julius |
description | Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-clay composite mix for masonry brick production. The challenges masonry bricks face include shrinkage and water susceptibility, hence the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed the blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10 % cement (by clay volume) and 20 % sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5 % WWF by clay volume. Prepared composites brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed that WWF contributed significantly to improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, capillary suction coefficient; increasing apparent density, weight loss, linear, and volumetric shrinkage. Prolonged time in water ensued higher water absorption. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability; hence, it can be employed in reinforcing cement adobe bricks. |
doi_str_mv | 10.4028/p-42y8vk |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091945974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091945974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-6dfeb3ed7667d8614091c5c1ac72fb3616b07760e9af41f954ea33731a25cfba3</originalsourceid><addsrcrecordid>eNplkF1LwzAUhosoOObAnxDwRoRq0qTp6t0cmxMGDj_YZUnTky2za2qSDvvv7ejAC6_OgfO8z4E3CK4Jvmc4Gj_UIYva8eHrLBgQzmnICGPnp53GCbkMRs7tMMZRyqOI4UHw8waylaWuNsgo9N5WfgteS7QWzgNa6w2a6xws0hXqLmhlTdFIr011xKewh8qHk8LkgJSx6KnRZXF0zaoDlKaGR7Tatk6bcNEWttN2-Rqs1-CuggslSgej0xwGn_PZx3QRLl-fX6aTZSijFPuQFwpyCkXCeVKMOWE4JTKWRMgkUjnlhOc4STiGVChGVBozEJQmlIgolioXdBjc9N7amu8GnM92prFV9zKjnStlcZqwjrrtKWmNcxZUVlu9F7bNCM6O1WZ11lfboXc96q2oupLk9s_4D_4FLLB7nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091945974</pqid></control><display><type>article</type><title>Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties</title><source>Scientific.net Journals</source><creator>Emmanuel, Ajisegiri ; Adediran, Adeolu Adesoji ; Owa, Adebayo Felix ; Akinwande, Abayomi Adewale ; Ademati, Akeem Oladele ; Balogun, Oluwatosin Abiodun ; Adesina, Olanrewaju Seun ; Olorunfemi, Bayode Julius</creator><creatorcontrib>Emmanuel, Ajisegiri ; Adediran, Adeolu Adesoji ; Owa, Adebayo Felix ; Akinwande, Abayomi Adewale ; Ademati, Akeem Oladele ; Balogun, Oluwatosin Abiodun ; Adesina, Olanrewaju Seun ; Olorunfemi, Bayode Julius</creatorcontrib><description>Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-clay composite mix for masonry brick production. The challenges masonry bricks face include shrinkage and water susceptibility, hence the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed the blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10 % cement (by clay volume) and 20 % sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5 % WWF by clay volume. Prepared composites brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed that WWF contributed significantly to improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, capillary suction coefficient; increasing apparent density, weight loss, linear, and volumetric shrinkage. Prolonged time in water ensued higher water absorption. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability; hence, it can be employed in reinforcing cement adobe bricks.</description><identifier>ISSN: 1663-3571</identifier><identifier>ISSN: 1663-4144</identifier><identifier>EISSN: 1663-4144</identifier><identifier>DOI: 10.4028/p-42y8vk</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Blending effects ; Bricks ; Building envelopes ; Bulk density ; Cement ; Cement constituents ; Clay ; Clay soils ; Dimensional stability ; Masonry ; Moisture absorption ; Moisture resistance ; Permeability ; Recycling ; Sand ; Soil porosity ; Soil properties ; Soil shrinkage ; Water absorption ; Weight loss</subject><ispartof>International journal of engineering research in Africa (Print), 2022-03, Vol.59, p.57-75</ispartof><rights>2022 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-6dfeb3ed7667d8614091c5c1ac72fb3616b07760e9af41f954ea33731a25cfba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6482?width=600</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Emmanuel, Ajisegiri</creatorcontrib><creatorcontrib>Adediran, Adeolu Adesoji</creatorcontrib><creatorcontrib>Owa, Adebayo Felix</creatorcontrib><creatorcontrib>Akinwande, Abayomi Adewale</creatorcontrib><creatorcontrib>Ademati, Akeem Oladele</creatorcontrib><creatorcontrib>Balogun, Oluwatosin Abiodun</creatorcontrib><creatorcontrib>Adesina, Olanrewaju Seun</creatorcontrib><creatorcontrib>Olorunfemi, Bayode Julius</creatorcontrib><title>Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties</title><title>International journal of engineering research in Africa (Print)</title><description>Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-clay composite mix for masonry brick production. The challenges masonry bricks face include shrinkage and water susceptibility, hence the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed the blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10 % cement (by clay volume) and 20 % sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5 % WWF by clay volume. Prepared composites brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed that WWF contributed significantly to improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, capillary suction coefficient; increasing apparent density, weight loss, linear, and volumetric shrinkage. Prolonged time in water ensued higher water absorption. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability; hence, it can be employed in reinforcing cement adobe bricks.</description><subject>Blending effects</subject><subject>Bricks</subject><subject>Building envelopes</subject><subject>Bulk density</subject><subject>Cement</subject><subject>Cement constituents</subject><subject>Clay</subject><subject>Clay soils</subject><subject>Dimensional stability</subject><subject>Masonry</subject><subject>Moisture absorption</subject><subject>Moisture resistance</subject><subject>Permeability</subject><subject>Recycling</subject><subject>Sand</subject><subject>Soil porosity</subject><subject>Soil properties</subject><subject>Soil shrinkage</subject><subject>Water absorption</subject><subject>Weight loss</subject><issn>1663-3571</issn><issn>1663-4144</issn><issn>1663-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkF1LwzAUhosoOObAnxDwRoRq0qTp6t0cmxMGDj_YZUnTky2za2qSDvvv7ejAC6_OgfO8z4E3CK4Jvmc4Gj_UIYva8eHrLBgQzmnICGPnp53GCbkMRs7tMMZRyqOI4UHw8waylaWuNsgo9N5WfgteS7QWzgNa6w2a6xws0hXqLmhlTdFIr011xKewh8qHk8LkgJSx6KnRZXF0zaoDlKaGR7Tatk6bcNEWttN2-Rqs1-CuggslSgej0xwGn_PZx3QRLl-fX6aTZSijFPuQFwpyCkXCeVKMOWE4JTKWRMgkUjnlhOc4STiGVChGVBozEJQmlIgolioXdBjc9N7amu8GnM92prFV9zKjnStlcZqwjrrtKWmNcxZUVlu9F7bNCM6O1WZ11lfboXc96q2oupLk9s_4D_4FLLB7nA</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Emmanuel, Ajisegiri</creator><creator>Adediran, Adeolu Adesoji</creator><creator>Owa, Adebayo Felix</creator><creator>Akinwande, Abayomi Adewale</creator><creator>Ademati, Akeem Oladele</creator><creator>Balogun, Oluwatosin Abiodun</creator><creator>Adesina, Olanrewaju Seun</creator><creator>Olorunfemi, Bayode Julius</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220315</creationdate><title>Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties</title><author>Emmanuel, Ajisegiri ; Adediran, Adeolu Adesoji ; Owa, Adebayo Felix ; Akinwande, Abayomi Adewale ; Ademati, Akeem Oladele ; Balogun, Oluwatosin Abiodun ; Adesina, Olanrewaju Seun ; Olorunfemi, Bayode Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-6dfeb3ed7667d8614091c5c1ac72fb3616b07760e9af41f954ea33731a25cfba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blending effects</topic><topic>Bricks</topic><topic>Building envelopes</topic><topic>Bulk density</topic><topic>Cement</topic><topic>Cement constituents</topic><topic>Clay</topic><topic>Clay soils</topic><topic>Dimensional stability</topic><topic>Masonry</topic><topic>Moisture absorption</topic><topic>Moisture resistance</topic><topic>Permeability</topic><topic>Recycling</topic><topic>Sand</topic><topic>Soil porosity</topic><topic>Soil properties</topic><topic>Soil shrinkage</topic><topic>Water absorption</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmanuel, Ajisegiri</creatorcontrib><creatorcontrib>Adediran, Adeolu Adesoji</creatorcontrib><creatorcontrib>Owa, Adebayo Felix</creatorcontrib><creatorcontrib>Akinwande, Abayomi Adewale</creatorcontrib><creatorcontrib>Ademati, Akeem Oladele</creatorcontrib><creatorcontrib>Balogun, Oluwatosin Abiodun</creatorcontrib><creatorcontrib>Adesina, Olanrewaju Seun</creatorcontrib><creatorcontrib>Olorunfemi, Bayode Julius</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering research in Africa (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmanuel, Ajisegiri</au><au>Adediran, Adeolu Adesoji</au><au>Owa, Adebayo Felix</au><au>Akinwande, Abayomi Adewale</au><au>Ademati, Akeem Oladele</au><au>Balogun, Oluwatosin Abiodun</au><au>Adesina, Olanrewaju Seun</au><au>Olorunfemi, Bayode Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties</atitle><jtitle>International journal of engineering research in Africa (Print)</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>59</volume><spage>57</spage><epage>75</epage><pages>57-75</pages><issn>1663-3571</issn><issn>1663-4144</issn><eissn>1663-4144</eissn><abstract>Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-clay composite mix for masonry brick production. The challenges masonry bricks face include shrinkage and water susceptibility, hence the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed the blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10 % cement (by clay volume) and 20 % sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5 % WWF by clay volume. Prepared composites brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed that WWF contributed significantly to improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, capillary suction coefficient; increasing apparent density, weight loss, linear, and volumetric shrinkage. Prolonged time in water ensued higher water absorption. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability; hence, it can be employed in reinforcing cement adobe bricks.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-42y8vk</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1663-3571 |
ispartof | International journal of engineering research in Africa (Print), 2022-03, Vol.59, p.57-75 |
issn | 1663-3571 1663-4144 1663-4144 |
language | eng |
recordid | cdi_proquest_journals_3091945974 |
source | Scientific.net Journals |
subjects | Blending effects Bricks Building envelopes Bulk density Cement Cement constituents Clay Clay soils Dimensional stability Masonry Moisture absorption Moisture resistance Permeability Recycling Sand Soil porosity Soil properties Soil shrinkage Water absorption Weight loss |
title | Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recycling%20of%20Synthetic%20Waste%20Wig%20Fiber%20in%20the%20Production%20of%20Cement-Adobe%20for%20Building%20Envelope:%20Physio-Hydric%20Properties&rft.jtitle=International%20journal%20of%20engineering%20research%20in%20Africa%20(Print)&rft.au=Emmanuel,%20Ajisegiri&rft.date=2022-03-15&rft.volume=59&rft.spage=57&rft.epage=75&rft.pages=57-75&rft.issn=1663-3571&rft.eissn=1663-4144&rft_id=info:doi/10.4028/p-42y8vk&rft_dat=%3Cproquest_cross%3E3091945974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091945974&rft_id=info:pmid/&rfr_iscdi=true |