Physical Modeling of Steel Resistance to Hydrogen Embrittlement
Hydrogen can be used in the same energy processes as natural gas and become a tool for implementing the transition to a sustainable low-carbon economy. The level of contamination resulting from controlled combustion of hydrogen or methane-hydrogen mixture is relatively low, which will significantly...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2023-03, Vol.943, p.91-96 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | |
container_start_page | 91 |
container_title | Key engineering materials |
container_volume | 943 |
creator | Devyaterikova, Natalya A. Tsvetkov, Anton S. Shaposhnikov, N.O. Strekalovskaya, Daria A. Nikolaeva, Anna |
description | Hydrogen can be used in the same energy processes as natural gas and become a tool for implementing the transition to a sustainable low-carbon economy. The level of contamination resulting from controlled combustion of hydrogen or methane-hydrogen mixture is relatively low, which will significantly reduce CO2 emissions. However, the use of hydrogen can involve considerable difficulties associated with the hydrogen compatibility of materials. With the increase in the production, storage and transportation of hydrogen gas, including through gas pipelines, hydrogen-resistant materials are needed. The main problem with hydrogen is its embrittling effect. Under the influence of hydrogen, pipelines materials can probably have the following: hydrogen charging of the surface layer under pressure, loss of plasticity at tensile loads, formation of cracks and blisters (by decogesia mechanism), diffusion to the stress concentrator according to adsorption theory, accumulation of hydrogen at the top of the crack (which can lead to cracking) and so on. To assess the possibility of using a pipeline system for transportation of hydrogen gas in large volumes, it is necessary to know hydrogen compatibility of pipe steel. Physical modeling of steel resistance to hydrogen embrittlement can be carried out using electrochemical and gas charging methods. |
doi_str_mv | 10.4028/p-g4pg69 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091675010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091675010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2059-7d915489f2a1536116b64a3d1b94483efb003fcc70cecf56504b20afea53cd193</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6r4E8IeBGhmjQfbU4isrrCiuLHOaTppNul29Qke9h_b6WCB08zh4d3hhehc0quOcnLmyFr-NBIdYBmVMo8U4USh-NOKMtUmctjdBLjhhBGSypm6PZ1vY-tNR1-9jV0bd9g7_B7AujwG8Q2JtNbwMnj5b4OvoEeL7ZVaFPqYAt9OkVHznQRzn7nHH0-LD7ul9nq5fHp_m6V2ZwIlRW1ooKXyuWGCiYplZXkhtW0UpyXDFw1fuSsLYgF64QUhFc5MQ6MYLamis3RxZQ7BP-1g5j0xu9CP57UjCgqC0EoGdXlpGzwMQZwegjt1oS9pkT_1KMHPdUz0quJpmD6mMCu_xL_4W-WjGXv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091675010</pqid></control><display><type>article</type><title>Physical Modeling of Steel Resistance to Hydrogen Embrittlement</title><source>Scientific.net Journals</source><creator>Devyaterikova, Natalya A. ; Tsvetkov, Anton S. ; Shaposhnikov, N.O. ; Strekalovskaya, Daria A. ; Nikolaeva, Anna</creator><creatorcontrib>Devyaterikova, Natalya A. ; Tsvetkov, Anton S. ; Shaposhnikov, N.O. ; Strekalovskaya, Daria A. ; Nikolaeva, Anna</creatorcontrib><description>Hydrogen can be used in the same energy processes as natural gas and become a tool for implementing the transition to a sustainable low-carbon economy. The level of contamination resulting from controlled combustion of hydrogen or methane-hydrogen mixture is relatively low, which will significantly reduce CO2 emissions. However, the use of hydrogen can involve considerable difficulties associated with the hydrogen compatibility of materials. With the increase in the production, storage and transportation of hydrogen gas, including through gas pipelines, hydrogen-resistant materials are needed. The main problem with hydrogen is its embrittling effect. Under the influence of hydrogen, pipelines materials can probably have the following: hydrogen charging of the surface layer under pressure, loss of plasticity at tensile loads, formation of cracks and blisters (by decogesia mechanism), diffusion to the stress concentrator according to adsorption theory, accumulation of hydrogen at the top of the crack (which can lead to cracking) and so on. To assess the possibility of using a pipeline system for transportation of hydrogen gas in large volumes, it is necessary to know hydrogen compatibility of pipe steel. Physical modeling of steel resistance to hydrogen embrittlement can be carried out using electrochemical and gas charging methods.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/p-g4pg69</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Blistering ; Blisters ; Compatibility ; Diffusion layers ; Emissions control ; Gas pipelines ; Hydrogen ; Hydrogen charging ; Hydrogen embrittlement ; Low carbon steels ; Modelling ; Natural gas ; Pressure effects ; Surface layers ; Tensile stress</subject><ispartof>Key engineering materials, 2023-03, Vol.943, p.91-96</ispartof><rights>2023 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2059-7d915489f2a1536116b64a3d1b94483efb003fcc70cecf56504b20afea53cd193</citedby><cites>FETCH-LOGICAL-c2059-7d915489f2a1536116b64a3d1b94483efb003fcc70cecf56504b20afea53cd193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6779?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Devyaterikova, Natalya A.</creatorcontrib><creatorcontrib>Tsvetkov, Anton S.</creatorcontrib><creatorcontrib>Shaposhnikov, N.O.</creatorcontrib><creatorcontrib>Strekalovskaya, Daria A.</creatorcontrib><creatorcontrib>Nikolaeva, Anna</creatorcontrib><title>Physical Modeling of Steel Resistance to Hydrogen Embrittlement</title><title>Key engineering materials</title><description>Hydrogen can be used in the same energy processes as natural gas and become a tool for implementing the transition to a sustainable low-carbon economy. The level of contamination resulting from controlled combustion of hydrogen or methane-hydrogen mixture is relatively low, which will significantly reduce CO2 emissions. However, the use of hydrogen can involve considerable difficulties associated with the hydrogen compatibility of materials. With the increase in the production, storage and transportation of hydrogen gas, including through gas pipelines, hydrogen-resistant materials are needed. The main problem with hydrogen is its embrittling effect. Under the influence of hydrogen, pipelines materials can probably have the following: hydrogen charging of the surface layer under pressure, loss of plasticity at tensile loads, formation of cracks and blisters (by decogesia mechanism), diffusion to the stress concentrator according to adsorption theory, accumulation of hydrogen at the top of the crack (which can lead to cracking) and so on. To assess the possibility of using a pipeline system for transportation of hydrogen gas in large volumes, it is necessary to know hydrogen compatibility of pipe steel. Physical modeling of steel resistance to hydrogen embrittlement can be carried out using electrochemical and gas charging methods.</description><subject>Blistering</subject><subject>Blisters</subject><subject>Compatibility</subject><subject>Diffusion layers</subject><subject>Emissions control</subject><subject>Gas pipelines</subject><subject>Hydrogen</subject><subject>Hydrogen charging</subject><subject>Hydrogen embrittlement</subject><subject>Low carbon steels</subject><subject>Modelling</subject><subject>Natural gas</subject><subject>Pressure effects</subject><subject>Surface layers</subject><subject>Tensile stress</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LxDAQBuAgCq6r4E8IeBGhmjQfbU4isrrCiuLHOaTppNul29Qke9h_b6WCB08zh4d3hhehc0quOcnLmyFr-NBIdYBmVMo8U4USh-NOKMtUmctjdBLjhhBGSypm6PZ1vY-tNR1-9jV0bd9g7_B7AujwG8Q2JtNbwMnj5b4OvoEeL7ZVaFPqYAt9OkVHznQRzn7nHH0-LD7ul9nq5fHp_m6V2ZwIlRW1ooKXyuWGCiYplZXkhtW0UpyXDFw1fuSsLYgF64QUhFc5MQ6MYLamis3RxZQ7BP-1g5j0xu9CP57UjCgqC0EoGdXlpGzwMQZwegjt1oS9pkT_1KMHPdUz0quJpmD6mMCu_xL_4W-WjGXv</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Devyaterikova, Natalya A.</creator><creator>Tsvetkov, Anton S.</creator><creator>Shaposhnikov, N.O.</creator><creator>Strekalovskaya, Daria A.</creator><creator>Nikolaeva, Anna</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20230329</creationdate><title>Physical Modeling of Steel Resistance to Hydrogen Embrittlement</title><author>Devyaterikova, Natalya A. ; Tsvetkov, Anton S. ; Shaposhnikov, N.O. ; Strekalovskaya, Daria A. ; Nikolaeva, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2059-7d915489f2a1536116b64a3d1b94483efb003fcc70cecf56504b20afea53cd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blistering</topic><topic>Blisters</topic><topic>Compatibility</topic><topic>Diffusion layers</topic><topic>Emissions control</topic><topic>Gas pipelines</topic><topic>Hydrogen</topic><topic>Hydrogen charging</topic><topic>Hydrogen embrittlement</topic><topic>Low carbon steels</topic><topic>Modelling</topic><topic>Natural gas</topic><topic>Pressure effects</topic><topic>Surface layers</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devyaterikova, Natalya A.</creatorcontrib><creatorcontrib>Tsvetkov, Anton S.</creatorcontrib><creatorcontrib>Shaposhnikov, N.O.</creatorcontrib><creatorcontrib>Strekalovskaya, Daria A.</creatorcontrib><creatorcontrib>Nikolaeva, Anna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devyaterikova, Natalya A.</au><au>Tsvetkov, Anton S.</au><au>Shaposhnikov, N.O.</au><au>Strekalovskaya, Daria A.</au><au>Nikolaeva, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Modeling of Steel Resistance to Hydrogen Embrittlement</atitle><jtitle>Key engineering materials</jtitle><date>2023-03-29</date><risdate>2023</risdate><volume>943</volume><spage>91</spage><epage>96</epage><pages>91-96</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Hydrogen can be used in the same energy processes as natural gas and become a tool for implementing the transition to a sustainable low-carbon economy. The level of contamination resulting from controlled combustion of hydrogen or methane-hydrogen mixture is relatively low, which will significantly reduce CO2 emissions. However, the use of hydrogen can involve considerable difficulties associated with the hydrogen compatibility of materials. With the increase in the production, storage and transportation of hydrogen gas, including through gas pipelines, hydrogen-resistant materials are needed. The main problem with hydrogen is its embrittling effect. Under the influence of hydrogen, pipelines materials can probably have the following: hydrogen charging of the surface layer under pressure, loss of plasticity at tensile loads, formation of cracks and blisters (by decogesia mechanism), diffusion to the stress concentrator according to adsorption theory, accumulation of hydrogen at the top of the crack (which can lead to cracking) and so on. To assess the possibility of using a pipeline system for transportation of hydrogen gas in large volumes, it is necessary to know hydrogen compatibility of pipe steel. Physical modeling of steel resistance to hydrogen embrittlement can be carried out using electrochemical and gas charging methods.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-g4pg69</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2023-03, Vol.943, p.91-96 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_3091675010 |
source | Scientific.net Journals |
subjects | Blistering Blisters Compatibility Diffusion layers Emissions control Gas pipelines Hydrogen Hydrogen charging Hydrogen embrittlement Low carbon steels Modelling Natural gas Pressure effects Surface layers Tensile stress |
title | Physical Modeling of Steel Resistance to Hydrogen Embrittlement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Modeling%20of%20Steel%20Resistance%20to%20Hydrogen%20Embrittlement&rft.jtitle=Key%20engineering%20materials&rft.au=Devyaterikova,%20Natalya%20A.&rft.date=2023-03-29&rft.volume=943&rft.spage=91&rft.epage=96&rft.pages=91-96&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/p-g4pg69&rft_dat=%3Cproquest_cross%3E3091675010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091675010&rft_id=info:pmid/&rfr_iscdi=true |