Movie Recommendation System Using Machine Learning

There are more number of movies has been released the user gets confusion, which movie is suit for them and difficult to choose, so to become easier the recommendation system comes into play if the user search a movie it gives a accurate result with similar various suggestion . The suggestion movies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Science and Technology 2023-02, Vol.124, p.398-406
Hauptverfasser: Muthurasu, N., Vishnu, J., Arokiaraj, P., Sandeep, D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue
container_start_page 398
container_title Advances in Science and Technology
container_volume 124
creator Muthurasu, N.
Vishnu, J.
Arokiaraj, P.
Sandeep, D.K.
description There are more number of movies has been released the user gets confusion, which movie is suit for them and difficult to choose, so to become easier the recommendation system comes into play if the user search a movie it gives a accurate result with similar various suggestion . The suggestion movies are given by the recommendation system by the user search e.g., if the movie is action, love, crime, drama or by the director the similar movies will be suggested. The recommendation systems are used to recommend movies using the user previews choice. The Sentiment Analysis which helps to analyse the users sentiments, which is based on their choice.In recent year, the sentimental analysis became one of most major things for many of the recommendation systems
doi_str_mv 10.4028/p-g9ekjp
format Article
fullrecord <record><control><sourceid>proquest_trans</sourceid><recordid>TN_cdi_proquest_journals_3091655673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091655673</sourcerecordid><originalsourceid>FETCH-LOGICAL-p96p-d2ec4fc6b728700288bb194ea7dacecc133d1f58aea2c113c870eaa1fab937773</originalsourceid><addsrcrecordid>eNpFkN1LwzAUxYMoOObAP6Hgm1DNTZqvRxl-wYag87mk6e3WadPYdIL_vZEOfLqHy49zDoeQS6A3BWX6NuRbgx_7cEJmICXLKRfy9Ki1keacLGJsKwpgmBZMzAhb998tZq_o-q5DX9ux7X329hNH7LL32PpttrZu13rMVmgHnx4X5KyxnxEXxzsnm4f7zfIpX708Pi_vVnkwMuQ1Q1c0TlaKaUVTOV1VYAq0qrYOnQPOa2iEtmiZA-AuUWgtNLYyXCnF5-Rqsg1D_3XAOJb7_jD4lFhyakAKIRVP1PVEjYP1qbTb_WNAy79VylBOq_BfOlpV8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091655673</pqid></control><display><type>article</type><title>Movie Recommendation System Using Machine Learning</title><source>Scientific.net Journals</source><creator>Muthurasu, N. ; Vishnu, J. ; Arokiaraj, P. ; Sandeep, D.K.</creator><creatorcontrib>Muthurasu, N. ; Vishnu, J. ; Arokiaraj, P. ; Sandeep, D.K.</creatorcontrib><description>There are more number of movies has been released the user gets confusion, which movie is suit for them and difficult to choose, so to become easier the recommendation system comes into play if the user search a movie it gives a accurate result with similar various suggestion . The suggestion movies are given by the recommendation system by the user search e.g., if the movie is action, love, crime, drama or by the director the similar movies will be suggested. The recommendation systems are used to recommend movies using the user previews choice. The Sentiment Analysis which helps to analyse the users sentiments, which is based on their choice.In recent year, the sentimental analysis became one of most major things for many of the recommendation systems</description><identifier>ISSN: 1662-8969</identifier><identifier>EISSN: 1662-0356</identifier><identifier>DOI: 10.4028/p-g9ekjp</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Data mining ; Machine learning ; Recommender systems ; Sentiment analysis ; Systems analysis</subject><ispartof>Advances in Science and Technology, 2023-02, Vol.124, p.398-406</ispartof><rights>2023 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6630?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Muthurasu, N.</creatorcontrib><creatorcontrib>Vishnu, J.</creatorcontrib><creatorcontrib>Arokiaraj, P.</creatorcontrib><creatorcontrib>Sandeep, D.K.</creatorcontrib><title>Movie Recommendation System Using Machine Learning</title><title>Advances in Science and Technology</title><description>There are more number of movies has been released the user gets confusion, which movie is suit for them and difficult to choose, so to become easier the recommendation system comes into play if the user search a movie it gives a accurate result with similar various suggestion . The suggestion movies are given by the recommendation system by the user search e.g., if the movie is action, love, crime, drama or by the director the similar movies will be suggested. The recommendation systems are used to recommend movies using the user previews choice. The Sentiment Analysis which helps to analyse the users sentiments, which is based on their choice.In recent year, the sentimental analysis became one of most major things for many of the recommendation systems</description><subject>Data mining</subject><subject>Machine learning</subject><subject>Recommender systems</subject><subject>Sentiment analysis</subject><subject>Systems analysis</subject><issn>1662-8969</issn><issn>1662-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkN1LwzAUxYMoOObAP6Hgm1DNTZqvRxl-wYag87mk6e3WadPYdIL_vZEOfLqHy49zDoeQS6A3BWX6NuRbgx_7cEJmICXLKRfy9Ki1keacLGJsKwpgmBZMzAhb998tZq_o-q5DX9ux7X329hNH7LL32PpttrZu13rMVmgHnx4X5KyxnxEXxzsnm4f7zfIpX708Pi_vVnkwMuQ1Q1c0TlaKaUVTOV1VYAq0qrYOnQPOa2iEtmiZA-AuUWgtNLYyXCnF5-Rqsg1D_3XAOJb7_jD4lFhyakAKIRVP1PVEjYP1qbTb_WNAy79VylBOq_BfOlpV8w</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Muthurasu, N.</creator><creator>Vishnu, J.</creator><creator>Arokiaraj, P.</creator><creator>Sandeep, D.K.</creator><general>Trans Tech Publications Ltd</general><scope/></search><sort><creationdate>20230227</creationdate><title>Movie Recommendation System Using Machine Learning</title><author>Muthurasu, N. ; Vishnu, J. ; Arokiaraj, P. ; Sandeep, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p96p-d2ec4fc6b728700288bb194ea7dacecc133d1f58aea2c113c870eaa1fab937773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data mining</topic><topic>Machine learning</topic><topic>Recommender systems</topic><topic>Sentiment analysis</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthurasu, N.</creatorcontrib><creatorcontrib>Vishnu, J.</creatorcontrib><creatorcontrib>Arokiaraj, P.</creatorcontrib><creatorcontrib>Sandeep, D.K.</creatorcontrib><jtitle>Advances in Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthurasu, N.</au><au>Vishnu, J.</au><au>Arokiaraj, P.</au><au>Sandeep, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Movie Recommendation System Using Machine Learning</atitle><jtitle>Advances in Science and Technology</jtitle><date>2023-02-27</date><risdate>2023</risdate><volume>124</volume><spage>398</spage><epage>406</epage><pages>398-406</pages><issn>1662-8969</issn><eissn>1662-0356</eissn><abstract>There are more number of movies has been released the user gets confusion, which movie is suit for them and difficult to choose, so to become easier the recommendation system comes into play if the user search a movie it gives a accurate result with similar various suggestion . The suggestion movies are given by the recommendation system by the user search e.g., if the movie is action, love, crime, drama or by the director the similar movies will be suggested. The recommendation systems are used to recommend movies using the user previews choice. The Sentiment Analysis which helps to analyse the users sentiments, which is based on their choice.In recent year, the sentimental analysis became one of most major things for many of the recommendation systems</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-g9ekjp</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1662-8969
ispartof Advances in Science and Technology, 2023-02, Vol.124, p.398-406
issn 1662-8969
1662-0356
language eng
recordid cdi_proquest_journals_3091655673
source Scientific.net Journals
subjects Data mining
Machine learning
Recommender systems
Sentiment analysis
Systems analysis
title Movie Recommendation System Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_trans&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Movie%20Recommendation%20System%20Using%20Machine%20Learning&rft.jtitle=Advances%20in%20Science%20and%20Technology&rft.au=Muthurasu,%20N.&rft.date=2023-02-27&rft.volume=124&rft.spage=398&rft.epage=406&rft.pages=398-406&rft.issn=1662-8969&rft.eissn=1662-0356&rft_id=info:doi/10.4028/p-g9ekjp&rft_dat=%3Cproquest_trans%3E3091655673%3C/proquest_trans%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091655673&rft_id=info:pmid/&rfr_iscdi=true