The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative

In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2023-05, Vol.424, p.77-98
Hauptverfasser: Abubakar, Bishir, Abdullahi, Isah, Abdulhameed, Mohammed, Yakubu, Dauda Gulibur, Baba, Ali M., Tahiru, Adamu G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 77
container_title Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum
container_volume 424
creator Abubakar, Bishir
Abdullahi, Isah
Abdulhameed, Mohammed
Yakubu, Dauda Gulibur
Baba, Ali M.
Tahiru, Adamu G.
description In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,
doi_str_mv 10.4028/p-l06795
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091545885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091545885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</originalsourceid><addsrcrecordid>eNplkE9LAzEQxRdRsFbBjxDwIsLqZHezf45SWyu06KE9L9M0sSnpZk2yrZ794qas4MHTzBt-M8x7UXRN4T6DpHxoYw15UbGTaEDzPIkrBsVp6IEmMaRlfh5dOLcFSGlJs0H0vdgIsrDYOCUaT8ZacG-NcTvjFScTbQ7ESDLHz4PQOuhOrR3BZk2mAn2_KIUlqiFI3tCi1kKTueLW8A02TRBLp5p3MsK284ZMLHKvTIOaPAmr9ujVXlxGZxK1E1e_dRgtJ-PFaBrPXp9fRo-zmAcnLJY0XUFRAIUkz2gqqoRTXuUAKIsEWbXOIJhFKKASZVYkrMrCVMoUylUpENNhdNPfba356ITz9dZ0Nvzi6hQqyjJWlixQtz0VPDhnhaxbq3Zov2oK9THiuq37iAN616P-mIMXfPN38R_8A9FFfFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091545885</pqid></control><display><type>article</type><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><source>Scientific.net Journals</source><creator>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</creator><creatorcontrib>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</creatorcontrib><description>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</description><identifier>ISSN: 1012-0386</identifier><identifier>ISSN: 1662-9507</identifier><identifier>EISSN: 1662-9507</identifier><identifier>DOI: 10.4028/p-l06795</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algorithms ; Biological activity ; Biological effects ; Boltzmann transport equation ; Design parameters ; Electric fields ; Electrokinetics ; Electroosmosis ; Exact solutions ; Fluid flow ; Force distribution ; Laplace transforms ; Mathematical analysis ; Maxwell fluids ; Microchannels ; Microfluidic devices ; Relaxation time ; Temperature distribution ; Velocity ; Velocity distribution</subject><ispartof>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2023-05, Vol.424, p.77-98</ispartof><rights>2023 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</cites><orcidid>0000-0003-1287-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6809?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Abubakar, Bishir</creatorcontrib><creatorcontrib>Abdullahi, Isah</creatorcontrib><creatorcontrib>Abdulhameed, Mohammed</creatorcontrib><creatorcontrib>Yakubu, Dauda Gulibur</creatorcontrib><creatorcontrib>Baba, Ali M.</creatorcontrib><creatorcontrib>Tahiru, Adamu G.</creatorcontrib><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><title>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</title><description>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</description><subject>Algorithms</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Boltzmann transport equation</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Electrokinetics</subject><subject>Electroosmosis</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Maxwell fluids</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Relaxation time</subject><subject>Temperature distribution</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1012-0386</issn><issn>1662-9507</issn><issn>1662-9507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxRdRsFbBjxDwIsLqZHezf45SWyu06KE9L9M0sSnpZk2yrZ794qas4MHTzBt-M8x7UXRN4T6DpHxoYw15UbGTaEDzPIkrBsVp6IEmMaRlfh5dOLcFSGlJs0H0vdgIsrDYOCUaT8ZacG-NcTvjFScTbQ7ESDLHz4PQOuhOrR3BZk2mAn2_KIUlqiFI3tCi1kKTueLW8A02TRBLp5p3MsK284ZMLHKvTIOaPAmr9ujVXlxGZxK1E1e_dRgtJ-PFaBrPXp9fRo-zmAcnLJY0XUFRAIUkz2gqqoRTXuUAKIsEWbXOIJhFKKASZVYkrMrCVMoUylUpENNhdNPfba356ITz9dZ0Nvzi6hQqyjJWlixQtz0VPDhnhaxbq3Zov2oK9THiuq37iAN616P-mIMXfPN38R_8A9FFfFk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Abubakar, Bishir</creator><creator>Abdullahi, Isah</creator><creator>Abdulhameed, Mohammed</creator><creator>Yakubu, Dauda Gulibur</creator><creator>Baba, Ali M.</creator><creator>Tahiru, Adamu G.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1287-8091</orcidid></search><sort><creationdate>20230508</creationdate><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><author>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Boltzmann transport equation</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Electrokinetics</topic><topic>Electroosmosis</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Maxwell fluids</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Relaxation time</topic><topic>Temperature distribution</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abubakar, Bishir</creatorcontrib><creatorcontrib>Abdullahi, Isah</creatorcontrib><creatorcontrib>Abdulhameed, Mohammed</creatorcontrib><creatorcontrib>Yakubu, Dauda Gulibur</creatorcontrib><creatorcontrib>Baba, Ali M.</creatorcontrib><creatorcontrib>Tahiru, Adamu G.</creatorcontrib><collection>CrossRef</collection><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abubakar, Bishir</au><au>Abdullahi, Isah</au><au>Abdulhameed, Mohammed</au><au>Yakubu, Dauda Gulibur</au><au>Baba, Ali M.</au><au>Tahiru, Adamu G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</atitle><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle><date>2023-05-08</date><risdate>2023</risdate><volume>424</volume><spage>77</spage><epage>98</epage><pages>77-98</pages><issn>1012-0386</issn><issn>1662-9507</issn><eissn>1662-9507</eissn><abstract>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-l06795</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1287-8091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-0386
ispartof Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2023-05, Vol.424, p.77-98
issn 1012-0386
1662-9507
1662-9507
language eng
recordid cdi_proquest_journals_3091545885
source Scientific.net Journals
subjects Algorithms
Biological activity
Biological effects
Boltzmann transport equation
Design parameters
Electric fields
Electrokinetics
Electroosmosis
Exact solutions
Fluid flow
Force distribution
Laplace transforms
Mathematical analysis
Maxwell fluids
Microchannels
Microfluidic devices
Relaxation time
Temperature distribution
Velocity
Velocity distribution
title The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Transient%20Electroosmotic%20Flow%20of%20Maxwell%20Fluids%20and%20Heat%20Transfer%20in%20a%20Parallel%20Microchannel%20Using%20Caputo%20Fractional%20Derivative&rft.jtitle=Diffusion%20and%20defect%20data.%20Solid%20state%20data.%20Pt.%20A,%20Defect%20and%20diffusion%20forum&rft.au=Abubakar,%20Bishir&rft.date=2023-05-08&rft.volume=424&rft.spage=77&rft.epage=98&rft.pages=77-98&rft.issn=1012-0386&rft.eissn=1662-9507&rft_id=info:doi/10.4028/p-l06795&rft_dat=%3Cproquest_cross%3E3091545885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091545885&rft_id=info:pmid/&rfr_iscdi=true