The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative
In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of bo...
Gespeichert in:
Veröffentlicht in: | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2023-05, Vol.424, p.77-98 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum |
container_volume | 424 |
creator | Abubakar, Bishir Abdullahi, Isah Abdulhameed, Mohammed Yakubu, Dauda Gulibur Baba, Ali M. Tahiru, Adamu G. |
description | In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential, |
doi_str_mv | 10.4028/p-l06795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091545885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091545885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</originalsourceid><addsrcrecordid>eNplkE9LAzEQxRdRsFbBjxDwIsLqZHezf45SWyu06KE9L9M0sSnpZk2yrZ794qas4MHTzBt-M8x7UXRN4T6DpHxoYw15UbGTaEDzPIkrBsVp6IEmMaRlfh5dOLcFSGlJs0H0vdgIsrDYOCUaT8ZacG-NcTvjFScTbQ7ESDLHz4PQOuhOrR3BZk2mAn2_KIUlqiFI3tCi1kKTueLW8A02TRBLp5p3MsK284ZMLHKvTIOaPAmr9ujVXlxGZxK1E1e_dRgtJ-PFaBrPXp9fRo-zmAcnLJY0XUFRAIUkz2gqqoRTXuUAKIsEWbXOIJhFKKASZVYkrMrCVMoUylUpENNhdNPfba356ITz9dZ0Nvzi6hQqyjJWlixQtz0VPDhnhaxbq3Zov2oK9THiuq37iAN616P-mIMXfPN38R_8A9FFfFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091545885</pqid></control><display><type>article</type><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><source>Scientific.net Journals</source><creator>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</creator><creatorcontrib>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</creatorcontrib><description>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</description><identifier>ISSN: 1012-0386</identifier><identifier>ISSN: 1662-9507</identifier><identifier>EISSN: 1662-9507</identifier><identifier>DOI: 10.4028/p-l06795</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Algorithms ; Biological activity ; Biological effects ; Boltzmann transport equation ; Design parameters ; Electric fields ; Electrokinetics ; Electroosmosis ; Exact solutions ; Fluid flow ; Force distribution ; Laplace transforms ; Mathematical analysis ; Maxwell fluids ; Microchannels ; Microfluidic devices ; Relaxation time ; Temperature distribution ; Velocity ; Velocity distribution</subject><ispartof>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2023-05, Vol.424, p.77-98</ispartof><rights>2023 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</cites><orcidid>0000-0003-1287-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6809?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Abubakar, Bishir</creatorcontrib><creatorcontrib>Abdullahi, Isah</creatorcontrib><creatorcontrib>Abdulhameed, Mohammed</creatorcontrib><creatorcontrib>Yakubu, Dauda Gulibur</creatorcontrib><creatorcontrib>Baba, Ali M.</creatorcontrib><creatorcontrib>Tahiru, Adamu G.</creatorcontrib><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><title>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</title><description>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</description><subject>Algorithms</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Boltzmann transport equation</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Electrokinetics</subject><subject>Electroosmosis</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Maxwell fluids</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Relaxation time</subject><subject>Temperature distribution</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1012-0386</issn><issn>1662-9507</issn><issn>1662-9507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxRdRsFbBjxDwIsLqZHezf45SWyu06KE9L9M0sSnpZk2yrZ794qas4MHTzBt-M8x7UXRN4T6DpHxoYw15UbGTaEDzPIkrBsVp6IEmMaRlfh5dOLcFSGlJs0H0vdgIsrDYOCUaT8ZacG-NcTvjFScTbQ7ESDLHz4PQOuhOrR3BZk2mAn2_KIUlqiFI3tCi1kKTueLW8A02TRBLp5p3MsK284ZMLHKvTIOaPAmr9ujVXlxGZxK1E1e_dRgtJ-PFaBrPXp9fRo-zmAcnLJY0XUFRAIUkz2gqqoRTXuUAKIsEWbXOIJhFKKASZVYkrMrCVMoUylUpENNhdNPfba356ITz9dZ0Nvzi6hQqyjJWlixQtz0VPDhnhaxbq3Zov2oK9THiuq37iAN616P-mIMXfPN38R_8A9FFfFk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Abubakar, Bishir</creator><creator>Abdullahi, Isah</creator><creator>Abdulhameed, Mohammed</creator><creator>Yakubu, Dauda Gulibur</creator><creator>Baba, Ali M.</creator><creator>Tahiru, Adamu G.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1287-8091</orcidid></search><sort><creationdate>20230508</creationdate><title>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</title><author>Abubakar, Bishir ; Abdullahi, Isah ; Abdulhameed, Mohammed ; Yakubu, Dauda Gulibur ; Baba, Ali M. ; Tahiru, Adamu G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1665-f13b07701026413e92c1c9600af72a59d40950a0709e8472594a59ff308b8eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Boltzmann transport equation</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Electrokinetics</topic><topic>Electroosmosis</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Maxwell fluids</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Relaxation time</topic><topic>Temperature distribution</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abubakar, Bishir</creatorcontrib><creatorcontrib>Abdullahi, Isah</creatorcontrib><creatorcontrib>Abdulhameed, Mohammed</creatorcontrib><creatorcontrib>Yakubu, Dauda Gulibur</creatorcontrib><creatorcontrib>Baba, Ali M.</creatorcontrib><creatorcontrib>Tahiru, Adamu G.</creatorcontrib><collection>CrossRef</collection><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abubakar, Bishir</au><au>Abdullahi, Isah</au><au>Abdulhameed, Mohammed</au><au>Yakubu, Dauda Gulibur</au><au>Baba, Ali M.</au><au>Tahiru, Adamu G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative</atitle><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle><date>2023-05-08</date><risdate>2023</risdate><volume>424</volume><spage>77</spage><epage>98</epage><pages>77-98</pages><issn>1012-0386</issn><issn>1662-9507</issn><eissn>1662-9507</eissn><abstract>In this work, we consider transient electroosmotic flow of fractional Maxwell fluids model derived for both velocity and temperature in a micro-channel. We use the Poisson-Boltzmann equation to describe the potential electric field applied along the length of the micro-channel. Exact solutions of both velocity and temperature were obtained using Laplace transform combined with finite Fourier sine transform. Due to the complexity of the equations for velocity and temperature, the inverse Laplace transform was obtained using the numerical inversion formula based on Gaver Stehfest’s algorithms. The numerical solutions were simulated with the help of Mathcard software and the graphical results showing the effects of time, relaxation time, electrokinetic width and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameter on the temperature distribution in the microchannel were presented and discussed. The results show that the applied electric field, the electroosmotic force, electrokinetic width, and relaxation time play vital role on the velocity profile in the micro-channel and the fractional parameter can be used to regulate both the velocity and temperature in the micro-channel. The effects of the various influential parameters on both fluid velocity and temperature distribution were found to be useful for the design of microfluidic devices. These devices could be useful for biomedical diagnosis and analysis, for clinical detection of viruses and bacteria in biological processes. Keywords: Caputo fractional derivative, Electro kinetic width, Electroosmotic flow, Heat transfer, Zeta potential,</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-l06795</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1287-8091</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-0386 |
ispartof | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2023-05, Vol.424, p.77-98 |
issn | 1012-0386 1662-9507 1662-9507 |
language | eng |
recordid | cdi_proquest_journals_3091545885 |
source | Scientific.net Journals |
subjects | Algorithms Biological activity Biological effects Boltzmann transport equation Design parameters Electric fields Electrokinetics Electroosmosis Exact solutions Fluid flow Force distribution Laplace transforms Mathematical analysis Maxwell fluids Microchannels Microfluidic devices Relaxation time Temperature distribution Velocity Velocity distribution |
title | The Transient Electroosmotic Flow of Maxwell Fluids and Heat Transfer in a Parallel Microchannel Using Caputo Fractional Derivative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Transient%20Electroosmotic%20Flow%20of%20Maxwell%20Fluids%20and%20Heat%20Transfer%20in%20a%20Parallel%20Microchannel%20Using%20Caputo%20Fractional%20Derivative&rft.jtitle=Diffusion%20and%20defect%20data.%20Solid%20state%20data.%20Pt.%20A,%20Defect%20and%20diffusion%20forum&rft.au=Abubakar,%20Bishir&rft.date=2023-05-08&rft.volume=424&rft.spage=77&rft.epage=98&rft.pages=77-98&rft.issn=1012-0386&rft.eissn=1662-9507&rft_id=info:doi/10.4028/p-l06795&rft_dat=%3Cproquest_cross%3E3091545885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091545885&rft_id=info:pmid/&rfr_iscdi=true |