Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate

Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Research 2024-08, Vol.3 (4), p.n/a
Hauptverfasser: Agha, Abdulrahman, Dawaymeh, Fadi, Alamoodi, Nahla, Alazzam, Anas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Applied Research
container_volume 3
creator Agha, Abdulrahman
Dawaymeh, Fadi
Alamoodi, Nahla
Alazzam, Anas
description Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery. A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).
doi_str_mv 10.1002/appl.202300116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091467529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091467529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsGi3rgOuW5PMNe5KrReoWFDXQyaXTkomGZMZdXY-gq_ha_kkplTUnaucwPf9h-SPohMEpwhCfEbbVk8xxDGECGV70QjnEE8SXBT7f-bDaOz9BgYhz2BGyCj6WJiaGqbMGkhaOcVop6wBVoJ6CFcOGsWclbpXXDHAxbNiwoOudrZf18ArTY34fHuvqBccVNbwkHQOZkBa1nsQklqrB64a0dWDDrh93QlsYDoEWi2kMoDZLdYIB6jhYHVxex8Qrbpa9Q0wyla0E8fRgaTai_H3eRQ9Xi4e5teT5d3VzXy2nDCU5ll4JmKwygvBMaEJyUVOqjSuqIyJTIVEmcQFzSVPiYwLmZAipYyTQlCeQVzxLD6KTne5rbNPvfBdubG9M2FlGUOCkixPMQnUdEeF3_HeCVm2TjXUDSWC5baRcttI-dNIEMhOeFFaDP_Q5Wy1Wv66XwYvl1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091467529</pqid></control><display><type>article</type><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</creator><creatorcontrib>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</creatorcontrib><description>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery. A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</description><identifier>ISSN: 2702-4288</identifier><identifier>EISSN: 2702-4288</identifier><identifier>DOI: 10.1002/appl.202300116</identifier><language>eng</language><publisher>Fulda: Wiley Subscription Services, Inc</publisher><subject>Argon plasma ; Atomic force microscopy ; Biocompatibility ; Biomedical materials ; Bonding agents ; Bonding strength ; Chemical bonds ; Contact angle ; Copolymers ; Coupling agents ; cyclic olefin co‐polymer ; Enhanced oil recovery ; Fabrication ; Flow rates ; Flow velocity ; Fourier transforms ; hybrid devices ; Leakage ; Lithium ; lithium niobate ; Materials recovery ; Medical research ; Microchannels ; Microfluidic devices ; Microfluidics ; Microscopy ; Oil recovery ; Polydimethylsiloxane ; Polyolefins ; Robust control ; Scanning electron microscopy ; Silanes ; Substrates ; Surface energy ; surface modification ; Surface properties ; Tensile strength ; Tensile tests</subject><ispartof>Applied Research, 2024-08, Vol.3 (4), p.n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</cites><orcidid>0000-0002-8518-8027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fappl.202300116$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fappl.202300116$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Agha, Abdulrahman</creatorcontrib><creatorcontrib>Dawaymeh, Fadi</creatorcontrib><creatorcontrib>Alamoodi, Nahla</creatorcontrib><creatorcontrib>Alazzam, Anas</creatorcontrib><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><title>Applied Research</title><description>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery. A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</description><subject>Argon plasma</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bonding agents</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Contact angle</subject><subject>Copolymers</subject><subject>Coupling agents</subject><subject>cyclic olefin co‐polymer</subject><subject>Enhanced oil recovery</subject><subject>Fabrication</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fourier transforms</subject><subject>hybrid devices</subject><subject>Leakage</subject><subject>Lithium</subject><subject>lithium niobate</subject><subject>Materials recovery</subject><subject>Medical research</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Oil recovery</subject><subject>Polydimethylsiloxane</subject><subject>Polyolefins</subject><subject>Robust control</subject><subject>Scanning electron microscopy</subject><subject>Silanes</subject><subject>Substrates</subject><subject>Surface energy</subject><subject>surface modification</subject><subject>Surface properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><issn>2702-4288</issn><issn>2702-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctKAzEUhgdRsGi3rgOuW5PMNe5KrReoWFDXQyaXTkomGZMZdXY-gq_ha_kkplTUnaucwPf9h-SPohMEpwhCfEbbVk8xxDGECGV70QjnEE8SXBT7f-bDaOz9BgYhz2BGyCj6WJiaGqbMGkhaOcVop6wBVoJ6CFcOGsWclbpXXDHAxbNiwoOudrZf18ArTY34fHuvqBccVNbwkHQOZkBa1nsQklqrB64a0dWDDrh93QlsYDoEWi2kMoDZLdYIB6jhYHVxex8Qrbpa9Q0wyla0E8fRgaTai_H3eRQ9Xi4e5teT5d3VzXy2nDCU5ll4JmKwygvBMaEJyUVOqjSuqIyJTIVEmcQFzSVPiYwLmZAipYyTQlCeQVzxLD6KTne5rbNPvfBdubG9M2FlGUOCkixPMQnUdEeF3_HeCVm2TjXUDSWC5baRcttI-dNIEMhOeFFaDP_Q5Wy1Wv66XwYvl1U</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Agha, Abdulrahman</creator><creator>Dawaymeh, Fadi</creator><creator>Alamoodi, Nahla</creator><creator>Alazzam, Anas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8518-8027</orcidid></search><sort><creationdate>202408</creationdate><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><author>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Argon plasma</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bonding agents</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Contact angle</topic><topic>Copolymers</topic><topic>Coupling agents</topic><topic>cyclic olefin co‐polymer</topic><topic>Enhanced oil recovery</topic><topic>Fabrication</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fourier transforms</topic><topic>hybrid devices</topic><topic>Leakage</topic><topic>Lithium</topic><topic>lithium niobate</topic><topic>Materials recovery</topic><topic>Medical research</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Oil recovery</topic><topic>Polydimethylsiloxane</topic><topic>Polyolefins</topic><topic>Robust control</topic><topic>Scanning electron microscopy</topic><topic>Silanes</topic><topic>Substrates</topic><topic>Surface energy</topic><topic>surface modification</topic><topic>Surface properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha, Abdulrahman</creatorcontrib><creatorcontrib>Dawaymeh, Fadi</creatorcontrib><creatorcontrib>Alamoodi, Nahla</creatorcontrib><creatorcontrib>Alazzam, Anas</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Applied Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agha, Abdulrahman</au><au>Dawaymeh, Fadi</au><au>Alamoodi, Nahla</au><au>Alazzam, Anas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</atitle><jtitle>Applied Research</jtitle><date>2024-08</date><risdate>2024</risdate><volume>3</volume><issue>4</issue><epage>n/a</epage><issn>2702-4288</issn><eissn>2702-4288</eissn><abstract>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery. A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</abstract><cop>Fulda</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/appl.202300116</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8518-8027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2702-4288
ispartof Applied Research, 2024-08, Vol.3 (4), p.n/a
issn 2702-4288
2702-4288
language eng
recordid cdi_proquest_journals_3091467529
source Wiley Online Library Journals Frontfile Complete
subjects Argon plasma
Atomic force microscopy
Biocompatibility
Biomedical materials
Bonding agents
Bonding strength
Chemical bonds
Contact angle
Copolymers
Coupling agents
cyclic olefin co‐polymer
Enhanced oil recovery
Fabrication
Flow rates
Flow velocity
Fourier transforms
hybrid devices
Leakage
Lithium
lithium niobate
Materials recovery
Medical research
Microchannels
Microfluidic devices
Microfluidics
Microscopy
Oil recovery
Polydimethylsiloxane
Polyolefins
Robust control
Scanning electron microscopy
Silanes
Substrates
Surface energy
surface modification
Surface properties
Tensile strength
Tensile tests
title Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20fabrication%20of%20hybrid%20microfluidic%20devices%20through%20silane%E2%80%90based%20bonding:%20A%20focus%20on%20polydimethylsiloxane%E2%80%90cyclic%20olefin%20copolymer%20and%20PDMS%E2%80%90lithium%20niobate&rft.jtitle=Applied%20Research&rft.au=Agha,%20Abdulrahman&rft.date=2024-08&rft.volume=3&rft.issue=4&rft.epage=n/a&rft.issn=2702-4288&rft.eissn=2702-4288&rft_id=info:doi/10.1002/appl.202300116&rft_dat=%3Cproquest_cross%3E3091467529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091467529&rft_id=info:pmid/&rfr_iscdi=true