Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate
Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDM...
Gespeichert in:
Veröffentlicht in: | Applied Research 2024-08, Vol.3 (4), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied Research |
container_volume | 3 |
creator | Agha, Abdulrahman Dawaymeh, Fadi Alamoodi, Nahla Alazzam, Anas |
description | Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery.
A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength). |
doi_str_mv | 10.1002/appl.202300116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091467529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091467529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsGi3rgOuW5PMNe5KrReoWFDXQyaXTkomGZMZdXY-gq_ha_kkplTUnaucwPf9h-SPohMEpwhCfEbbVk8xxDGECGV70QjnEE8SXBT7f-bDaOz9BgYhz2BGyCj6WJiaGqbMGkhaOcVop6wBVoJ6CFcOGsWclbpXXDHAxbNiwoOudrZf18ArTY34fHuvqBccVNbwkHQOZkBa1nsQklqrB64a0dWDDrh93QlsYDoEWi2kMoDZLdYIB6jhYHVxex8Qrbpa9Q0wyla0E8fRgaTai_H3eRQ9Xi4e5teT5d3VzXy2nDCU5ll4JmKwygvBMaEJyUVOqjSuqIyJTIVEmcQFzSVPiYwLmZAipYyTQlCeQVzxLD6KTne5rbNPvfBdubG9M2FlGUOCkixPMQnUdEeF3_HeCVm2TjXUDSWC5baRcttI-dNIEMhOeFFaDP_Q5Wy1Wv66XwYvl1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091467529</pqid></control><display><type>article</type><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</creator><creatorcontrib>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</creatorcontrib><description>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery.
A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</description><identifier>ISSN: 2702-4288</identifier><identifier>EISSN: 2702-4288</identifier><identifier>DOI: 10.1002/appl.202300116</identifier><language>eng</language><publisher>Fulda: Wiley Subscription Services, Inc</publisher><subject>Argon plasma ; Atomic force microscopy ; Biocompatibility ; Biomedical materials ; Bonding agents ; Bonding strength ; Chemical bonds ; Contact angle ; Copolymers ; Coupling agents ; cyclic olefin co‐polymer ; Enhanced oil recovery ; Fabrication ; Flow rates ; Flow velocity ; Fourier transforms ; hybrid devices ; Leakage ; Lithium ; lithium niobate ; Materials recovery ; Medical research ; Microchannels ; Microfluidic devices ; Microfluidics ; Microscopy ; Oil recovery ; Polydimethylsiloxane ; Polyolefins ; Robust control ; Scanning electron microscopy ; Silanes ; Substrates ; Surface energy ; surface modification ; Surface properties ; Tensile strength ; Tensile tests</subject><ispartof>Applied Research, 2024-08, Vol.3 (4), p.n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</cites><orcidid>0000-0002-8518-8027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fappl.202300116$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fappl.202300116$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Agha, Abdulrahman</creatorcontrib><creatorcontrib>Dawaymeh, Fadi</creatorcontrib><creatorcontrib>Alamoodi, Nahla</creatorcontrib><creatorcontrib>Alazzam, Anas</creatorcontrib><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><title>Applied Research</title><description>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery.
A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</description><subject>Argon plasma</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bonding agents</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Contact angle</subject><subject>Copolymers</subject><subject>Coupling agents</subject><subject>cyclic olefin co‐polymer</subject><subject>Enhanced oil recovery</subject><subject>Fabrication</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fourier transforms</subject><subject>hybrid devices</subject><subject>Leakage</subject><subject>Lithium</subject><subject>lithium niobate</subject><subject>Materials recovery</subject><subject>Medical research</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Oil recovery</subject><subject>Polydimethylsiloxane</subject><subject>Polyolefins</subject><subject>Robust control</subject><subject>Scanning electron microscopy</subject><subject>Silanes</subject><subject>Substrates</subject><subject>Surface energy</subject><subject>surface modification</subject><subject>Surface properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><issn>2702-4288</issn><issn>2702-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctKAzEUhgdRsGi3rgOuW5PMNe5KrReoWFDXQyaXTkomGZMZdXY-gq_ha_kkplTUnaucwPf9h-SPohMEpwhCfEbbVk8xxDGECGV70QjnEE8SXBT7f-bDaOz9BgYhz2BGyCj6WJiaGqbMGkhaOcVop6wBVoJ6CFcOGsWclbpXXDHAxbNiwoOudrZf18ArTY34fHuvqBccVNbwkHQOZkBa1nsQklqrB64a0dWDDrh93QlsYDoEWi2kMoDZLdYIB6jhYHVxex8Qrbpa9Q0wyla0E8fRgaTai_H3eRQ9Xi4e5teT5d3VzXy2nDCU5ll4JmKwygvBMaEJyUVOqjSuqIyJTIVEmcQFzSVPiYwLmZAipYyTQlCeQVzxLD6KTne5rbNPvfBdubG9M2FlGUOCkixPMQnUdEeF3_HeCVm2TjXUDSWC5baRcttI-dNIEMhOeFFaDP_Q5Wy1Wv66XwYvl1U</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Agha, Abdulrahman</creator><creator>Dawaymeh, Fadi</creator><creator>Alamoodi, Nahla</creator><creator>Alazzam, Anas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8518-8027</orcidid></search><sort><creationdate>202408</creationdate><title>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</title><author>Agha, Abdulrahman ; Dawaymeh, Fadi ; Alamoodi, Nahla ; Alazzam, Anas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-421c0b78ed29a497e79b53baf39f5ef16f28a7fd59f38f4985acd98ead602bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Argon plasma</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bonding agents</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Contact angle</topic><topic>Copolymers</topic><topic>Coupling agents</topic><topic>cyclic olefin co‐polymer</topic><topic>Enhanced oil recovery</topic><topic>Fabrication</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fourier transforms</topic><topic>hybrid devices</topic><topic>Leakage</topic><topic>Lithium</topic><topic>lithium niobate</topic><topic>Materials recovery</topic><topic>Medical research</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Oil recovery</topic><topic>Polydimethylsiloxane</topic><topic>Polyolefins</topic><topic>Robust control</topic><topic>Scanning electron microscopy</topic><topic>Silanes</topic><topic>Substrates</topic><topic>Surface energy</topic><topic>surface modification</topic><topic>Surface properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha, Abdulrahman</creatorcontrib><creatorcontrib>Dawaymeh, Fadi</creatorcontrib><creatorcontrib>Alamoodi, Nahla</creatorcontrib><creatorcontrib>Alazzam, Anas</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Applied Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agha, Abdulrahman</au><au>Dawaymeh, Fadi</au><au>Alamoodi, Nahla</au><au>Alazzam, Anas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate</atitle><jtitle>Applied Research</jtitle><date>2024-08</date><risdate>2024</risdate><volume>3</volume><issue>4</issue><epage>n/a</epage><issn>2702-4288</issn><eissn>2702-4288</eissn><abstract>Effective manipulation and control of fluids in microfluidic channels requires robust bonding between the different components. Polydimethylsiloxane (PDMS) is widely employed in microchannel fabrication due to its affordability, biocompatibility, and straightforward fabrication process. However, PDMS's low surface energy poses challenges in bonding with many organic and inorganic substrates, hindering the development of hybrid microfluidic devices. In this study, a simple and versatile three step process is presented for bonding PDMS microchannels with organic (cyclic olefin copolymer (COC)) and inorganic substrates (lithium niobate (LiNbO3)) using plasma activation and a silane coupling agent. Initially, the PDMS surface undergoes oxygen/argon plasma activation, followed by functionalization with (3‐aminopropyl) triethoxysilane (APTES). Subsequently, the COC or LiNbO3 is plasma activated and brought into contact with PDMS under a load at a specific temperature. Characterization by Fourier transform infrared, scanning electron microscopy, atomic force microscopy, and contact angle measurements confirmed the successful treatment of the substrates. In addition, bonding strength of the fabricated hybrid devices was assessed through leakage and tensile tests. Under optimized conditions (100°C and 4% v/v APTES), PDMS‐COC hybrid microchannels achieved a flow rate of 600 mL/h without leakage and a tensile strength of 562 kPa. Conversely, the PDMS‐ LiNbO3 assembly demonstrated a flow rate of 216 mL/h before leakage, with a tensile strength of 334 kPa. This bonding method exhibits significant potential and versatility for various materials in microfluidic applications, ranging from biomedical research to enhanced oil recovery.
A simple three‐step process to bond polydimethylsiloxane (PDMS) microchannels with cyclic olefin copolymer and lithium niobate (LiNbO3) substrates. Overcoming PDMS's low surface energy, it enables robust bonding, vital for fluid control. Optimized conditions result in impressive hybrid microchannels (600 mL/h flow, 562 kPa strength) and PDMS‐LiNbO3 assembly (216 mL/h flow, 334 kPa strength).</abstract><cop>Fulda</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/appl.202300116</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8518-8027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2702-4288 |
ispartof | Applied Research, 2024-08, Vol.3 (4), p.n/a |
issn | 2702-4288 2702-4288 |
language | eng |
recordid | cdi_proquest_journals_3091467529 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Argon plasma Atomic force microscopy Biocompatibility Biomedical materials Bonding agents Bonding strength Chemical bonds Contact angle Copolymers Coupling agents cyclic olefin co‐polymer Enhanced oil recovery Fabrication Flow rates Flow velocity Fourier transforms hybrid devices Leakage Lithium lithium niobate Materials recovery Medical research Microchannels Microfluidic devices Microfluidics Microscopy Oil recovery Polydimethylsiloxane Polyolefins Robust control Scanning electron microscopy Silanes Substrates Surface energy surface modification Surface properties Tensile strength Tensile tests |
title | Enhancing fabrication of hybrid microfluidic devices through silane‐based bonding: A focus on polydimethylsiloxane‐cyclic olefin copolymer and PDMS‐lithium niobate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20fabrication%20of%20hybrid%20microfluidic%20devices%20through%20silane%E2%80%90based%20bonding:%20A%20focus%20on%20polydimethylsiloxane%E2%80%90cyclic%20olefin%20copolymer%20and%20PDMS%E2%80%90lithium%20niobate&rft.jtitle=Applied%20Research&rft.au=Agha,%20Abdulrahman&rft.date=2024-08&rft.volume=3&rft.issue=4&rft.epage=n/a&rft.issn=2702-4288&rft.eissn=2702-4288&rft_id=info:doi/10.1002/appl.202300116&rft_dat=%3Cproquest_cross%3E3091467529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091467529&rft_id=info:pmid/&rfr_iscdi=true |