Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor

With the emergence of new technologies, wearable and portable devices become essential tools for various applications, which are flexibly designed. In this situation, flexible supercapacitors with fast charge and discharge cycles are needed as their power source. This study introduces the flexible p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2024-01, Vol.2024 (1)
Hauptverfasser: Lee, Joonyoung, Kwon, Yongchai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of energy research
container_volume 2024
creator Lee, Joonyoung
Kwon, Yongchai
description With the emergence of new technologies, wearable and portable devices become essential tools for various applications, which are flexibly designed. In this situation, flexible supercapacitors with fast charge and discharge cycles are needed as their power source. This study introduces the flexible pseudocapacitor electrode fabricated by electrodeposition of manganese oxide (MnO 2 ) onto heat‐treated hydrophilic buckypaper (BP) molded on polydimethylsiloxane (PDMS). Here, the heat treatment of BP that is optimized by a proper adoption of thermogravimetric analysis is performed to enhance the electrodeposition efficiency of MnO 2 . Then, proper hydrophilicity of the heat‐treated BP (H‐BP) and successful preparation of MnO 2 /H‐BP@PDMS electrode is well confirmed by electrochemical, spectroscopical, and optical measurements. In their evaluations, it is found that heat treatment of BP is more important factor than electrodeposition time to improve the electrodeposition efficiency of MnO 2 under the same aqueous electrolyte. With that, such optimally prepared MnO 2 /H‐BP@PDMS electrode shows a high electrical double layer and excellent specific capacitance of 1.31 F/cm 2 at 1 mA/cm 2 , which are better results than those of other electrodes.
doi_str_mv 10.1155/2024/8654961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091427862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091427862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-6a9276a33d402c02bc7b9bd956fee2716da763eeed792e7768b08ab4f55168383</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqWw4wCW2BLqn9iOl1BRilTUBUXqzrKdF0gJTbAT0e44AmfkJKS0qzd6M5qRPoQuKbmhVIgRIywdZVKkWtIjNKBE64TSdHmMBoRLnmiilqfoLMYVIb1H1QCZSQWb0lWAn-z61a4hAp5vyhzwfQW-DXWvJtaF0tsWcvxVtm94Crb9_f5ZBPj_3XX-fdvYBgIu6oCfu15521hftnU4RyeFrSJcHO4QvUzuF-NpMps_PI5vZ4mngrSJtJopaTnPU8I8Yc4rp12uhSwAmKIyt0pyAMiVZqCUzBzJrEsLIajMeMaH6Grf24T6s4PYmlXdhXU_aTjRNGUqk6xPXe9TPtQxBihME8oPG7aGErNDaHYIzQEh_wN8gWSX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091427862</pqid></control><display><type>article</type><title>Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Lee, Joonyoung ; Kwon, Yongchai</creator><contributor>Pranav Kalidas Katkar</contributor><creatorcontrib>Lee, Joonyoung ; Kwon, Yongchai ; Pranav Kalidas Katkar</creatorcontrib><description>With the emergence of new technologies, wearable and portable devices become essential tools for various applications, which are flexibly designed. In this situation, flexible supercapacitors with fast charge and discharge cycles are needed as their power source. This study introduces the flexible pseudocapacitor electrode fabricated by electrodeposition of manganese oxide (MnO 2 ) onto heat‐treated hydrophilic buckypaper (BP) molded on polydimethylsiloxane (PDMS). Here, the heat treatment of BP that is optimized by a proper adoption of thermogravimetric analysis is performed to enhance the electrodeposition efficiency of MnO 2 . Then, proper hydrophilicity of the heat‐treated BP (H‐BP) and successful preparation of MnO 2 /H‐BP@PDMS electrode is well confirmed by electrochemical, spectroscopical, and optical measurements. In their evaluations, it is found that heat treatment of BP is more important factor than electrodeposition time to improve the electrodeposition efficiency of MnO 2 under the same aqueous electrolyte. With that, such optimally prepared MnO 2 /H‐BP@PDMS electrode shows a high electrical double layer and excellent specific capacitance of 1.31 F/cm 2 at 1 mA/cm 2 , which are better results than those of other electrodes.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/8654961</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Aqueous electrolytes ; Capacitance ; Carbon ; Contact angle ; Electrochemistry ; Electrodeposition ; Electrodes ; Electrolytes ; Energy ; Heat ; Heat treating ; Heat treatment ; Heat treatments ; Manganese ; Manganese dioxide ; Manganese oxides ; Optical measurement ; Oxidation ; Polydimethylsiloxane ; Portable equipment ; Power sources ; Supercapacitors ; Thermogravimetric analysis</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Joonyoung Lee and Yongchai Kwon. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-6a9276a33d402c02bc7b9bd956fee2716da763eeed792e7768b08ab4f55168383</cites><orcidid>0000-0003-3118-401X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3091427862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091427862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21367,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Pranav Kalidas Katkar</contributor><creatorcontrib>Lee, Joonyoung</creatorcontrib><creatorcontrib>Kwon, Yongchai</creatorcontrib><title>Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor</title><title>International journal of energy research</title><description>With the emergence of new technologies, wearable and portable devices become essential tools for various applications, which are flexibly designed. In this situation, flexible supercapacitors with fast charge and discharge cycles are needed as their power source. This study introduces the flexible pseudocapacitor electrode fabricated by electrodeposition of manganese oxide (MnO 2 ) onto heat‐treated hydrophilic buckypaper (BP) molded on polydimethylsiloxane (PDMS). Here, the heat treatment of BP that is optimized by a proper adoption of thermogravimetric analysis is performed to enhance the electrodeposition efficiency of MnO 2 . Then, proper hydrophilicity of the heat‐treated BP (H‐BP) and successful preparation of MnO 2 /H‐BP@PDMS electrode is well confirmed by electrochemical, spectroscopical, and optical measurements. In their evaluations, it is found that heat treatment of BP is more important factor than electrodeposition time to improve the electrodeposition efficiency of MnO 2 under the same aqueous electrolyte. With that, such optimally prepared MnO 2 /H‐BP@PDMS electrode shows a high electrical double layer and excellent specific capacitance of 1.31 F/cm 2 at 1 mA/cm 2 , which are better results than those of other electrodes.</description><subject>Aqueous electrolytes</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Contact angle</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Heat</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Manganese</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Optical measurement</subject><subject>Oxidation</subject><subject>Polydimethylsiloxane</subject><subject>Portable equipment</subject><subject>Power sources</subject><subject>Supercapacitors</subject><subject>Thermogravimetric analysis</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE1OwzAUhC0EEqWw4wCW2BLqn9iOl1BRilTUBUXqzrKdF0gJTbAT0e44AmfkJKS0qzd6M5qRPoQuKbmhVIgRIywdZVKkWtIjNKBE64TSdHmMBoRLnmiilqfoLMYVIb1H1QCZSQWb0lWAn-z61a4hAp5vyhzwfQW-DXWvJtaF0tsWcvxVtm94Crb9_f5ZBPj_3XX-fdvYBgIu6oCfu15521hftnU4RyeFrSJcHO4QvUzuF-NpMps_PI5vZ4mngrSJtJopaTnPU8I8Yc4rp12uhSwAmKIyt0pyAMiVZqCUzBzJrEsLIajMeMaH6Grf24T6s4PYmlXdhXU_aTjRNGUqk6xPXe9TPtQxBihME8oPG7aGErNDaHYIzQEh_wN8gWSX</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lee, Joonyoung</creator><creator>Kwon, Yongchai</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3118-401X</orcidid></search><sort><creationdate>20240101</creationdate><title>Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor</title><author>Lee, Joonyoung ; Kwon, Yongchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-6a9276a33d402c02bc7b9bd956fee2716da763eeed792e7768b08ab4f55168383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Contact angle</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Heat</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Manganese</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Optical measurement</topic><topic>Oxidation</topic><topic>Polydimethylsiloxane</topic><topic>Portable equipment</topic><topic>Power sources</topic><topic>Supercapacitors</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joonyoung</creatorcontrib><creatorcontrib>Kwon, Yongchai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joonyoung</au><au>Kwon, Yongchai</au><au>Pranav Kalidas Katkar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>With the emergence of new technologies, wearable and portable devices become essential tools for various applications, which are flexibly designed. In this situation, flexible supercapacitors with fast charge and discharge cycles are needed as their power source. This study introduces the flexible pseudocapacitor electrode fabricated by electrodeposition of manganese oxide (MnO 2 ) onto heat‐treated hydrophilic buckypaper (BP) molded on polydimethylsiloxane (PDMS). Here, the heat treatment of BP that is optimized by a proper adoption of thermogravimetric analysis is performed to enhance the electrodeposition efficiency of MnO 2 . Then, proper hydrophilicity of the heat‐treated BP (H‐BP) and successful preparation of MnO 2 /H‐BP@PDMS electrode is well confirmed by electrochemical, spectroscopical, and optical measurements. In their evaluations, it is found that heat treatment of BP is more important factor than electrodeposition time to improve the electrodeposition efficiency of MnO 2 under the same aqueous electrolyte. With that, such optimally prepared MnO 2 /H‐BP@PDMS electrode shows a high electrical double layer and excellent specific capacitance of 1.31 F/cm 2 at 1 mA/cm 2 , which are better results than those of other electrodes.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/8654961</doi><orcidid>https://orcid.org/0000-0003-3118-401X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2024-01, Vol.2024 (1)
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_3091427862
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; ProQuest Central
subjects Aqueous electrolytes
Capacitance
Carbon
Contact angle
Electrochemistry
Electrodeposition
Electrodes
Electrolytes
Energy
Heat
Heat treating
Heat treatment
Heat treatments
Manganese
Manganese dioxide
Manganese oxides
Optical measurement
Oxidation
Polydimethylsiloxane
Portable equipment
Power sources
Supercapacitors
Thermogravimetric analysis
title Flexible Manganese Oxide Electrode Fabricated with Heat‐Treated Buckypaper for Supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Manganese%20Oxide%20Electrode%20Fabricated%20with%20Heat%E2%80%90Treated%20Buckypaper%20for%20Supercapacitor&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Lee,%20Joonyoung&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/8654961&rft_dat=%3Cproquest_cross%3E3091427862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091427862&rft_id=info:pmid/&rfr_iscdi=true