An Improved Nonlinear I‐V Model for GaN HEMTs
In this article, an improved nonlinear model for gallium nitride high‐electron‐mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self‐heating effect and trap effect in the traditional model, this thesis uses the Softp...
Gespeichert in:
Veröffentlicht in: | International journal of RF and microwave computer-aided engineering 2024, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of RF and microwave computer-aided engineering |
container_volume | 2024 |
creator | Yuan, Qingyu Zhang, Yixin Luan, Xiaodong Zhang, Jun Xie, Chunxu Cheng, Jiali |
description | In this article, an improved nonlinear model for gallium nitride high‐electron‐mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self‐heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self‐heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of
I
ds
is less than 2.44 × 10
−6
. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to
V
ds
, which is tedious and complicated. The proposed model can be directly used to fit the
G
m
. The verification results show that the MSE of the
G
m
is less than 1.07 × 10
−4
, which proves the effectiveness of the equation. |
doi_str_mv | 10.1155/2024/8834864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091427252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091427252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-7c3dd058604216ccd192ed456735554c89b08d03059bd1b7778d71f914e44e03</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKs7HyDg1nFu_ibJspTaFtq6GcRdmEky0DKd1KQV3PkIPmOfxKnt6l64h_t9HIQeCbwQIkROgfJcKcZVwa_QgIDWGXD5cf2_FxmnGm7RXUobgP5G2QDlow7Pt7sYvrzDq9C1685XEc-PP7_veBmcb3ETIp5WKzybLMt0j26aqk3-4TKHqHydlONZtnibzsejRWapUPtMWuYcCFUAp6Sw1hFNveOikEwIwa3SNSgHDISuHamllMpJ0mjCPece2BA9nd_2zT4PPu3NJhxi1ycaBj1FJRW0p57PlI0hpegbs4vrbRW_DQFzMmJORszFCPsD0xpPiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091427252</pqid></control><display><type>article</type><title>An Improved Nonlinear I‐V Model for GaN HEMTs</title><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Yuan, Qingyu ; Zhang, Yixin ; Luan, Xiaodong ; Zhang, Jun ; Xie, Chunxu ; Cheng, Jiali</creator><contributor>Merih Palandoken</contributor><creatorcontrib>Yuan, Qingyu ; Zhang, Yixin ; Luan, Xiaodong ; Zhang, Jun ; Xie, Chunxu ; Cheng, Jiali ; Merih Palandoken</creatorcontrib><description>In this article, an improved nonlinear model for gallium nitride high‐electron‐mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self‐heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self‐heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of
I
ds
is less than 2.44 × 10
−6
. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to
V
ds
, which is tedious and complicated. The proposed model can be directly used to fit the
G
m
. The verification results show that the MSE of the
G
m
is less than 1.07 × 10
−4
, which proves the effectiveness of the equation.</description><identifier>ISSN: 1096-4290</identifier><identifier>EISSN: 1099-047X</identifier><identifier>DOI: 10.1155/2024/8834864</identifier><language>eng</language><publisher>Hoboken: Hindawi Limited</publisher><subject>Accuracy ; Microwave communications ; Transistors</subject><ispartof>International journal of RF and microwave computer-aided engineering, 2024, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Qingyu Yuan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-7c3dd058604216ccd192ed456735554c89b08d03059bd1b7778d71f914e44e03</cites><orcidid>0009-0004-3780-3971 ; 0009-0002-0452-5720 ; 0000-0002-0349-534X ; 0009-0004-4439-0466 ; 0009-0003-3161-6270 ; 0009-0004-0655-1230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3091427252/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091427252?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,21367,27900,27901,27902,33721,43781,74273</link.rule.ids></links><search><contributor>Merih Palandoken</contributor><creatorcontrib>Yuan, Qingyu</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Luan, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Xie, Chunxu</creatorcontrib><creatorcontrib>Cheng, Jiali</creatorcontrib><title>An Improved Nonlinear I‐V Model for GaN HEMTs</title><title>International journal of RF and microwave computer-aided engineering</title><description>In this article, an improved nonlinear model for gallium nitride high‐electron‐mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self‐heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self‐heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of
I
ds
is less than 2.44 × 10
−6
. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to
V
ds
, which is tedious and complicated. The proposed model can be directly used to fit the
G
m
. The verification results show that the MSE of the
G
m
is less than 1.07 × 10
−4
, which proves the effectiveness of the equation.</description><subject>Accuracy</subject><subject>Microwave communications</subject><subject>Transistors</subject><issn>1096-4290</issn><issn>1099-047X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkM1KAzEURoMoWKs7HyDg1nFu_ibJspTaFtq6GcRdmEky0DKd1KQV3PkIPmOfxKnt6l64h_t9HIQeCbwQIkROgfJcKcZVwa_QgIDWGXD5cf2_FxmnGm7RXUobgP5G2QDlow7Pt7sYvrzDq9C1685XEc-PP7_veBmcb3ETIp5WKzybLMt0j26aqk3-4TKHqHydlONZtnibzsejRWapUPtMWuYcCFUAp6Sw1hFNveOikEwIwa3SNSgHDISuHamllMpJ0mjCPece2BA9nd_2zT4PPu3NJhxi1ycaBj1FJRW0p57PlI0hpegbs4vrbRW_DQFzMmJORszFCPsD0xpPiQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yuan, Qingyu</creator><creator>Zhang, Yixin</creator><creator>Luan, Xiaodong</creator><creator>Zhang, Jun</creator><creator>Xie, Chunxu</creator><creator>Cheng, Jiali</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0004-3780-3971</orcidid><orcidid>https://orcid.org/0009-0002-0452-5720</orcidid><orcidid>https://orcid.org/0000-0002-0349-534X</orcidid><orcidid>https://orcid.org/0009-0004-4439-0466</orcidid><orcidid>https://orcid.org/0009-0003-3161-6270</orcidid><orcidid>https://orcid.org/0009-0004-0655-1230</orcidid></search><sort><creationdate>2024</creationdate><title>An Improved Nonlinear I‐V Model for GaN HEMTs</title><author>Yuan, Qingyu ; Zhang, Yixin ; Luan, Xiaodong ; Zhang, Jun ; Xie, Chunxu ; Cheng, Jiali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-7c3dd058604216ccd192ed456735554c89b08d03059bd1b7778d71f914e44e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Microwave communications</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qingyu</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Luan, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Xie, Chunxu</creatorcontrib><creatorcontrib>Cheng, Jiali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of RF and microwave computer-aided engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qingyu</au><au>Zhang, Yixin</au><au>Luan, Xiaodong</au><au>Zhang, Jun</au><au>Xie, Chunxu</au><au>Cheng, Jiali</au><au>Merih Palandoken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Nonlinear I‐V Model for GaN HEMTs</atitle><jtitle>International journal of RF and microwave computer-aided engineering</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1096-4290</issn><eissn>1099-047X</eissn><abstract>In this article, an improved nonlinear model for gallium nitride high‐electron‐mobility transistors (GaN HEMTs) is proposed. Aiming at the problem of insufficient accuracy of the nonlinear DC model caused by the self‐heating effect and trap effect in the traditional model, this thesis uses the Softplus function to improve the traditional nonlinear DC model and establishes a nonlinear DC model including the self‐heating effect, which is verified by the three GaN HEMT devices of different sizes. The MSE of
I
ds
is less than 2.44 × 10
−6
. The traditional empirical basis model needs to calculate the partial derivative of the current expression with respect to
V
ds
, which is tedious and complicated. The proposed model can be directly used to fit the
G
m
. The verification results show that the MSE of the
G
m
is less than 1.07 × 10
−4
, which proves the effectiveness of the equation.</abstract><cop>Hoboken</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/8834864</doi><orcidid>https://orcid.org/0009-0004-3780-3971</orcidid><orcidid>https://orcid.org/0009-0002-0452-5720</orcidid><orcidid>https://orcid.org/0000-0002-0349-534X</orcidid><orcidid>https://orcid.org/0009-0004-4439-0466</orcidid><orcidid>https://orcid.org/0009-0003-3161-6270</orcidid><orcidid>https://orcid.org/0009-0004-0655-1230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-4290 |
ispartof | International journal of RF and microwave computer-aided engineering, 2024, Vol.2024 (1) |
issn | 1096-4290 1099-047X |
language | eng |
recordid | cdi_proquest_journals_3091427252 |
source | Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection; ProQuest Central |
subjects | Accuracy Microwave communications Transistors |
title | An Improved Nonlinear I‐V Model for GaN HEMTs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Nonlinear%20I%E2%80%90V%20Model%20for%20GaN%20HEMTs&rft.jtitle=International%20journal%20of%20RF%20and%20microwave%20computer-aided%20engineering&rft.au=Yuan,%20Qingyu&rft.date=2024&rft.volume=2024&rft.issue=1&rft.issn=1096-4290&rft.eissn=1099-047X&rft_id=info:doi/10.1155/2024/8834864&rft_dat=%3Cproquest_cross%3E3091427252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091427252&rft_id=info:pmid/&rfr_iscdi=true |