Neural network classification of granular flows from audio signals: preliminary results

Granulometric analysis is a key element in the study of geological granular flows. This category of flows includes some of the most dangerous phenomena known in geology. Knowing the size of the clasts flowing in a geological granular flow is extremely important to predict its behavior and hazard. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2024-08, Vol.19 (8), p.5143-5155
Hauptverfasser: Galván, David, Alba, Alfonso, Arce-Santana, Edgar, Sarocchi, Damiano, Méndez, Martín Oswaldo, Segura, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5155
container_issue 8
container_start_page 5143
container_title Acta geotechnica
container_volume 19
creator Galván, David
Alba, Alfonso
Arce-Santana, Edgar
Sarocchi, Damiano
Méndez, Martín Oswaldo
Segura, Oscar
description Granulometric analysis is a key element in the study of geological granular flows. This category of flows includes some of the most dangerous phenomena known in geology. Knowing the size of the clasts flowing in a geological granular flow is extremely important to predict its behavior and hazard. This work combines the potential of neural networks (NN) with the task of classifying from monodisperse granular flows to determine the type of material and the granular size, directly from audio recordings. For this purpose, three NN models are proposed: one to classify the material (in this case, either dacite or bearing balls) and the other two to predict the granular size of each material. In addition, a data augmentation method based on surrogate audio signals is proposed to increase the amount of data. The results of these NN models are promising, as almost 99% of the 35,100 size predictions are located within 1 phi from the true size and more than 92% of the 21,600 material classifications are correct. Although in nature geological granular flows are polydisperse and our studies refer only to monodisperse materials, they represent a very important starting point for future studies where audio recordings from granular flows could be used as a discriminative data, with strong implications for civil protection.
doi_str_mv 10.1007/s11440-023-02203-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091216991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091216991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-14b468a17117a25c8952bc369c0d465ba6756024800f515e59058d861c0eddc33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpElbb7L4Dxa9KB5DNk2XrN1mTVqK396sFb15GGZg3hve_Ag5R7hEgOIqIuY5ZMB4KgY8Gw_IDEuJGSLnh78zE8fkJMYNgOQslzPy9mSHoFva2X704Z2aVsfoGmd073xHfUPXQXdDqwNtWj9G2gS_pXqonafRrTvdxmu6C7Z1W9fp8EmDjUPbx1Ny1KSdPfvpc_J6d_uyeMiWz_ePi5tlplnF-wzzVS5LjQVioZkwZSXYynBZGahzKVZaFkICy0uARqCwogJR1ukXA7auDedzcjHd3QX_MdjYq40fwj6W4lAhQ1lVmFRsUpngYwy2UbvgtimuQlB7gGoCqBJA9Q1QjcnEJ1NM4m5tw9_pf1xfQtVz2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091216991</pqid></control><display><type>article</type><title>Neural network classification of granular flows from audio signals: preliminary results</title><source>SpringerLink Journals</source><creator>Galván, David ; Alba, Alfonso ; Arce-Santana, Edgar ; Sarocchi, Damiano ; Méndez, Martín Oswaldo ; Segura, Oscar</creator><creatorcontrib>Galván, David ; Alba, Alfonso ; Arce-Santana, Edgar ; Sarocchi, Damiano ; Méndez, Martín Oswaldo ; Segura, Oscar</creatorcontrib><description>Granulometric analysis is a key element in the study of geological granular flows. This category of flows includes some of the most dangerous phenomena known in geology. Knowing the size of the clasts flowing in a geological granular flow is extremely important to predict its behavior and hazard. This work combines the potential of neural networks (NN) with the task of classifying from monodisperse granular flows to determine the type of material and the granular size, directly from audio recordings. For this purpose, three NN models are proposed: one to classify the material (in this case, either dacite or bearing balls) and the other two to predict the granular size of each material. In addition, a data augmentation method based on surrogate audio signals is proposed to increase the amount of data. The results of these NN models are promising, as almost 99% of the 35,100 size predictions are located within 1 phi from the true size and more than 92% of the 21,600 material classifications are correct. Although in nature geological granular flows are polydisperse and our studies refer only to monodisperse materials, they represent a very important starting point for future studies where audio recordings from granular flows could be used as a discriminative data, with strong implications for civil protection.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-023-02203-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Audio data ; Audio signals ; Complex Fluids and Microfluidics ; Data augmentation ; Engineering ; Extreme values ; Foundations ; Geoengineering ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulics ; Neural networks ; Research Paper ; Signal classification ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics</subject><ispartof>Acta geotechnica, 2024-08, Vol.19 (8), p.5143-5155</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-14b468a17117a25c8952bc369c0d465ba6756024800f515e59058d861c0eddc33</cites><orcidid>0000-0002-1148-0383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-023-02203-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-023-02203-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galván, David</creatorcontrib><creatorcontrib>Alba, Alfonso</creatorcontrib><creatorcontrib>Arce-Santana, Edgar</creatorcontrib><creatorcontrib>Sarocchi, Damiano</creatorcontrib><creatorcontrib>Méndez, Martín Oswaldo</creatorcontrib><creatorcontrib>Segura, Oscar</creatorcontrib><title>Neural network classification of granular flows from audio signals: preliminary results</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Granulometric analysis is a key element in the study of geological granular flows. This category of flows includes some of the most dangerous phenomena known in geology. Knowing the size of the clasts flowing in a geological granular flow is extremely important to predict its behavior and hazard. This work combines the potential of neural networks (NN) with the task of classifying from monodisperse granular flows to determine the type of material and the granular size, directly from audio recordings. For this purpose, three NN models are proposed: one to classify the material (in this case, either dacite or bearing balls) and the other two to predict the granular size of each material. In addition, a data augmentation method based on surrogate audio signals is proposed to increase the amount of data. The results of these NN models are promising, as almost 99% of the 35,100 size predictions are located within 1 phi from the true size and more than 92% of the 21,600 material classifications are correct. Although in nature geological granular flows are polydisperse and our studies refer only to monodisperse materials, they represent a very important starting point for future studies where audio recordings from granular flows could be used as a discriminative data, with strong implications for civil protection.</description><subject>Audio data</subject><subject>Audio signals</subject><subject>Complex Fluids and Microfluidics</subject><subject>Data augmentation</subject><subject>Engineering</subject><subject>Extreme values</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Neural networks</subject><subject>Research Paper</subject><subject>Signal classification</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpElbb7L4Dxa9KB5DNk2XrN1mTVqK396sFb15GGZg3hve_Ag5R7hEgOIqIuY5ZMB4KgY8Gw_IDEuJGSLnh78zE8fkJMYNgOQslzPy9mSHoFva2X704Z2aVsfoGmd073xHfUPXQXdDqwNtWj9G2gS_pXqonafRrTvdxmu6C7Z1W9fp8EmDjUPbx1Ny1KSdPfvpc_J6d_uyeMiWz_ePi5tlplnF-wzzVS5LjQVioZkwZSXYynBZGahzKVZaFkICy0uARqCwogJR1ukXA7auDedzcjHd3QX_MdjYq40fwj6W4lAhQ1lVmFRsUpngYwy2UbvgtimuQlB7gGoCqBJA9Q1QjcnEJ1NM4m5tw9_pf1xfQtVz2Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Galván, David</creator><creator>Alba, Alfonso</creator><creator>Arce-Santana, Edgar</creator><creator>Sarocchi, Damiano</creator><creator>Méndez, Martín Oswaldo</creator><creator>Segura, Oscar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1148-0383</orcidid></search><sort><creationdate>20240801</creationdate><title>Neural network classification of granular flows from audio signals: preliminary results</title><author>Galván, David ; Alba, Alfonso ; Arce-Santana, Edgar ; Sarocchi, Damiano ; Méndez, Martín Oswaldo ; Segura, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-14b468a17117a25c8952bc369c0d465ba6756024800f515e59058d861c0eddc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio data</topic><topic>Audio signals</topic><topic>Complex Fluids and Microfluidics</topic><topic>Data augmentation</topic><topic>Engineering</topic><topic>Extreme values</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Neural networks</topic><topic>Research Paper</topic><topic>Signal classification</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galván, David</creatorcontrib><creatorcontrib>Alba, Alfonso</creatorcontrib><creatorcontrib>Arce-Santana, Edgar</creatorcontrib><creatorcontrib>Sarocchi, Damiano</creatorcontrib><creatorcontrib>Méndez, Martín Oswaldo</creatorcontrib><creatorcontrib>Segura, Oscar</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galván, David</au><au>Alba, Alfonso</au><au>Arce-Santana, Edgar</au><au>Sarocchi, Damiano</au><au>Méndez, Martín Oswaldo</au><au>Segura, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network classification of granular flows from audio signals: preliminary results</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>5143</spage><epage>5155</epage><pages>5143-5155</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Granulometric analysis is a key element in the study of geological granular flows. This category of flows includes some of the most dangerous phenomena known in geology. Knowing the size of the clasts flowing in a geological granular flow is extremely important to predict its behavior and hazard. This work combines the potential of neural networks (NN) with the task of classifying from monodisperse granular flows to determine the type of material and the granular size, directly from audio recordings. For this purpose, three NN models are proposed: one to classify the material (in this case, either dacite or bearing balls) and the other two to predict the granular size of each material. In addition, a data augmentation method based on surrogate audio signals is proposed to increase the amount of data. The results of these NN models are promising, as almost 99% of the 35,100 size predictions are located within 1 phi from the true size and more than 92% of the 21,600 material classifications are correct. Although in nature geological granular flows are polydisperse and our studies refer only to monodisperse materials, they represent a very important starting point for future studies where audio recordings from granular flows could be used as a discriminative data, with strong implications for civil protection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-023-02203-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1148-0383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2024-08, Vol.19 (8), p.5143-5155
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_3091216991
source SpringerLink Journals
subjects Audio data
Audio signals
Complex Fluids and Microfluidics
Data augmentation
Engineering
Extreme values
Foundations
Geoengineering
Geology
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Neural networks
Research Paper
Signal classification
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
title Neural network classification of granular flows from audio signals: preliminary results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20classification%20of%20granular%20flows%20from%20audio%20signals:%20preliminary%20results&rft.jtitle=Acta%20geotechnica&rft.au=Galv%C3%A1n,%20David&rft.date=2024-08-01&rft.volume=19&rft.issue=8&rft.spage=5143&rft.epage=5155&rft.pages=5143-5155&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-023-02203-w&rft_dat=%3Cproquest_cross%3E3091216991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091216991&rft_id=info:pmid/&rfr_iscdi=true