On the Topology of Surfaces with a Common Boundary and Close DN-Maps
Let Ω be a smooth compact Riemann surface with the boundary Γ, and let Λ : H 1 (Γ) ↦ L 2 (Γ), Λf ≔ ∂ ν u| Γ be its DN map, where u obeys Δ g u = 0 in Ω and u = f on Γ. As is known, the genus m of the surface Ω is determined by its DN map Λ. In this paper, we prove the existence of Riemann surfaces o...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.283 (4), p.549-555 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 555 |
---|---|
container_issue | 4 |
container_start_page | 549 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 283 |
creator | Korikov, D. V. |
description | Let Ω be a smooth compact Riemann surface with the boundary Γ, and let Λ : H
1
(Γ) ↦ L
2
(Γ), Λf ≔ ∂
ν
u|
Γ
be its DN map, where u obeys Δ
g
u = 0 in Ω and u = f on Γ. As is known, the genus m of the surface Ω is determined by its DN map Λ. In this paper, we prove the existence of Riemann surfaces of arbitrary genus m′ > m, with the boundary Γ, and such that their DN maps are arbitrarily close to Λ with respect to the operator norm. In other words, an arbitrarily small perturbation of the DN map may change the surface topology. |
doi_str_mv | 10.1007/s10958-024-07291-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091130316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091130316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115x-8514ad71a64085a2e7e42be8dcfd96ddde0316ae68240b69a5bb6a855fe8c9c03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTbYcfxaQkoBqdAFZW05sdOH2jjYjUj_HpcgsWM1o9E9M6MDwDXBtwRjcRcJVkwinOUIi0wR1J-AEWGCIikUO019GiNKRX4OLmLc4ARxSUdgMm_gfuXgwrd-65cH6Gv43oXaVC7Cr_V-BQ0s_G7nG_jgu8aacICmsbDY-ujg5A29mjZegrPabKO7-q1j8DF9XBTPaDZ_einuZ6gihPVIMpIbK4jhOZbMZE64PCudtFVtFbfWOkwJN47LLMclV4aVJTeSsdrJSlWYjsHNsLcN_rNzca83vgtNOqkpVoTQI59S2ZCqgo8xuFq3Yb1Lj2uC9dGWHmzpZEv_2NJ9gugAxRRuli78rf6H-gYYEWxm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091130316</pqid></control><display><type>article</type><title>On the Topology of Surfaces with a Common Boundary and Close DN-Maps</title><source>SpringerLink (Online service)</source><creator>Korikov, D. V.</creator><creatorcontrib>Korikov, D. V.</creatorcontrib><description>Let Ω be a smooth compact Riemann surface with the boundary Γ, and let Λ : H
1
(Γ) ↦ L
2
(Γ), Λf ≔ ∂
ν
u|
Γ
be its DN map, where u obeys Δ
g
u = 0 in Ω and u = f on Γ. As is known, the genus m of the surface Ω is determined by its DN map Λ. In this paper, we prove the existence of Riemann surfaces of arbitrary genus m′ > m, with the boundary Γ, and such that their DN maps are arbitrarily close to Λ with respect to the operator norm. In other words, an arbitrarily small perturbation of the DN map may change the surface topology.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07291-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Riemann surfaces ; Topology</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.283 (4), p.549-555</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115x-8514ad71a64085a2e7e42be8dcfd96ddde0316ae68240b69a5bb6a855fe8c9c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-024-07291-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-024-07291-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Korikov, D. V.</creatorcontrib><title>On the Topology of Surfaces with a Common Boundary and Close DN-Maps</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Let Ω be a smooth compact Riemann surface with the boundary Γ, and let Λ : H
1
(Γ) ↦ L
2
(Γ), Λf ≔ ∂
ν
u|
Γ
be its DN map, where u obeys Δ
g
u = 0 in Ω and u = f on Γ. As is known, the genus m of the surface Ω is determined by its DN map Λ. In this paper, we prove the existence of Riemann surfaces of arbitrary genus m′ > m, with the boundary Γ, and such that their DN maps are arbitrarily close to Λ with respect to the operator norm. In other words, an arbitrarily small perturbation of the DN map may change the surface topology.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann surfaces</subject><subject>Topology</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTbYcfxaQkoBqdAFZW05sdOH2jjYjUj_HpcgsWM1o9E9M6MDwDXBtwRjcRcJVkwinOUIi0wR1J-AEWGCIikUO019GiNKRX4OLmLc4ARxSUdgMm_gfuXgwrd-65cH6Gv43oXaVC7Cr_V-BQ0s_G7nG_jgu8aacICmsbDY-ujg5A29mjZegrPabKO7-q1j8DF9XBTPaDZ_einuZ6gihPVIMpIbK4jhOZbMZE64PCudtFVtFbfWOkwJN47LLMclV4aVJTeSsdrJSlWYjsHNsLcN_rNzca83vgtNOqkpVoTQI59S2ZCqgo8xuFq3Yb1Lj2uC9dGWHmzpZEv_2NJ9gugAxRRuli78rf6H-gYYEWxm</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Korikov, D. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On the Topology of Surfaces with a Common Boundary and Close DN-Maps</title><author>Korikov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115x-8514ad71a64085a2e7e42be8dcfd96ddde0316ae68240b69a5bb6a855fe8c9c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann surfaces</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korikov, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korikov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Topology of Surfaces with a Common Boundary and Close DN-Maps</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>283</volume><issue>4</issue><spage>549</spage><epage>555</epage><pages>549-555</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Let Ω be a smooth compact Riemann surface with the boundary Γ, and let Λ : H
1
(Γ) ↦ L
2
(Γ), Λf ≔ ∂
ν
u|
Γ
be its DN map, where u obeys Δ
g
u = 0 in Ω and u = f on Γ. As is known, the genus m of the surface Ω is determined by its DN map Λ. In this paper, we prove the existence of Riemann surfaces of arbitrary genus m′ > m, with the boundary Γ, and such that their DN maps are arbitrarily close to Λ with respect to the operator norm. In other words, an arbitrarily small perturbation of the DN map may change the surface topology.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07291-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2024, Vol.283 (4), p.549-555 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_3091130316 |
source | SpringerLink (Online service) |
subjects | Mathematics Mathematics and Statistics Riemann surfaces Topology |
title | On the Topology of Surfaces with a Common Boundary and Close DN-Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Topology%20of%20Surfaces%20with%20a%20Common%20Boundary%20and%20Close%20DN-Maps&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Korikov,%20D.%20V.&rft.date=2024&rft.volume=283&rft.issue=4&rft.spage=549&rft.epage=555&rft.pages=549-555&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07291-x&rft_dat=%3Cproquest_cross%3E3091130316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091130316&rft_id=info:pmid/&rfr_iscdi=true |