Multifaceted aerosol effects on precipitation

Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2024-08, Vol.17 (8), p.719-732
Hauptverfasser: Stier, Philip, van den Heever, Susan C., Christensen, Matthew W., Gryspeerdt, Edward, Dagan, Guy, Saleeby, Stephen M., Bollasina, Massimo, Donner, Leo, Emanuel, Kerry, Ekman, Annica M. L., Feingold, Graham, Field, Paul, Forster, Piers, Haywood, Jim, Kahn, Ralph, Koren, Ilan, Kummerow, Christian, L’Ecuyer, Tristan, Lohmann, Ulrike, Ming, Yi, Myhre, Gunnar, Quaas, Johannes, Rosenfeld, Daniel, Samset, Bjorn, Seifert, Axel, Stephens, Graeme, Tao, Wei-Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 8
container_start_page 719
container_title Nature geoscience
container_volume 17
creator Stier, Philip
van den Heever, Susan C.
Christensen, Matthew W.
Gryspeerdt, Edward
Dagan, Guy
Saleeby, Stephen M.
Bollasina, Massimo
Donner, Leo
Emanuel, Kerry
Ekman, Annica M. L.
Feingold, Graham
Field, Paul
Forster, Piers
Haywood, Jim
Kahn, Ralph
Koren, Ilan
Kummerow, Christian
L’Ecuyer, Tristan
Lohmann, Ulrike
Ming, Yi
Myhre, Gunnar
Quaas, Johannes
Rosenfeld, Daniel
Samset, Bjorn
Seifert, Axel
Stephens, Graeme
Tao, Wei-Kuo
description Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.
doi_str_mv 10.1038/s41561-024-01482-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091017754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091017754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c58c343fa8ef44753448acaf0057ec66a6143602a7576cb4e6581afe8aebfcc33</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3Hd2dEFVCkIhaYLdcco1QhCbY78PYYAmJjOv_wX44-Qs4ZXDIQ9ipLpjSjwCUFJi2n-oAsmFGcQgv28FfbVh6Tk5x3ABqkUQtCH_Z96aIPWPCl8ZjGPPYNxoih5GYcmilh6Kau-NKNwyk5ir7PePZzl-T59uZptaabx7v71fWGBg5QaFA2CCmitxhlnRFSWh98BFAGg9ZeMyk0cG-U0WErUSvLfETrcRtDEGJJLubeKY3ve8zF7cZ9GuqkE9AyYMYoWV18doX6dU4Y3ZS6N58-HAP3hcXNWFzF4r6xOF1DYg7lah5eMf1V_5P6BCN8ZLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091017754</pqid></control><display><type>article</type><title>Multifaceted aerosol effects on precipitation</title><source>Nature</source><source>SpringerNature Journals</source><creator>Stier, Philip ; van den Heever, Susan C. ; Christensen, Matthew W. ; Gryspeerdt, Edward ; Dagan, Guy ; Saleeby, Stephen M. ; Bollasina, Massimo ; Donner, Leo ; Emanuel, Kerry ; Ekman, Annica M. L. ; Feingold, Graham ; Field, Paul ; Forster, Piers ; Haywood, Jim ; Kahn, Ralph ; Koren, Ilan ; Kummerow, Christian ; L’Ecuyer, Tristan ; Lohmann, Ulrike ; Ming, Yi ; Myhre, Gunnar ; Quaas, Johannes ; Rosenfeld, Daniel ; Samset, Bjorn ; Seifert, Axel ; Stephens, Graeme ; Tao, Wei-Kuo</creator><creatorcontrib>Stier, Philip ; van den Heever, Susan C. ; Christensen, Matthew W. ; Gryspeerdt, Edward ; Dagan, Guy ; Saleeby, Stephen M. ; Bollasina, Massimo ; Donner, Leo ; Emanuel, Kerry ; Ekman, Annica M. L. ; Feingold, Graham ; Field, Paul ; Forster, Piers ; Haywood, Jim ; Kahn, Ralph ; Koren, Ilan ; Kummerow, Christian ; L’Ecuyer, Tristan ; Lohmann, Ulrike ; Ming, Yi ; Myhre, Gunnar ; Quaas, Johannes ; Rosenfeld, Daniel ; Samset, Bjorn ; Seifert, Axel ; Stephens, Graeme ; Tao, Wei-Kuo</creatorcontrib><description>Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-024-01482-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/824 ; 704/106/694 ; Aerosol effects ; Aerosol-cloud interactions ; Aerosols ; Balances (scales) ; Climate change ; Climate models ; Climate prediction ; Cloud droplets ; Clouds ; Convergence zones ; Crystals ; Droplets ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Energy balance ; Environmental impact ; Evaporation ; Evaporation rate ; Geochemistry ; Geology ; Geophysics/Geodesy ; Global aerosols ; Global climate ; Global climate models ; Global precipitation ; Ice ; Ice crystals ; Intertropical convergence zone ; Mean precipitation ; Precipitation ; Precipitation patterns ; Review Article</subject><ispartof>Nature geoscience, 2024-08, Vol.17 (8), p.719-732</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c58c343fa8ef44753448acaf0057ec66a6143602a7576cb4e6581afe8aebfcc33</cites><orcidid>0000-0002-4273-6644 ; 0000-0002-3815-4756 ; 0000-0001-8013-1833 ; 0000-0002-6078-0171 ; 0000-0001-6759-6265 ; 0000-0002-2066-2082 ; 0000-0001-9760-3550 ; 0000-0001-7057-194X ; 0000-0002-1191-0128 ; 0000-0002-5234-6359 ; 0000-0002-8391-6334 ; 0000-0002-0774-2926 ; 0000-0002-4309-476X ; 0000-0001-7509-7650 ; 0000-0001-8885-3785 ; 0000-0001-8708-008X ; 0000-0002-2143-6634 ; 0000-0002-5940-2114 ; 0000-0002-1487-7300 ; 0000-0001-9843-3864 ; 0000-0002-7584-4836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-024-01482-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-024-01482-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>van den Heever, Susan C.</creatorcontrib><creatorcontrib>Christensen, Matthew W.</creatorcontrib><creatorcontrib>Gryspeerdt, Edward</creatorcontrib><creatorcontrib>Dagan, Guy</creatorcontrib><creatorcontrib>Saleeby, Stephen M.</creatorcontrib><creatorcontrib>Bollasina, Massimo</creatorcontrib><creatorcontrib>Donner, Leo</creatorcontrib><creatorcontrib>Emanuel, Kerry</creatorcontrib><creatorcontrib>Ekman, Annica M. L.</creatorcontrib><creatorcontrib>Feingold, Graham</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Forster, Piers</creatorcontrib><creatorcontrib>Haywood, Jim</creatorcontrib><creatorcontrib>Kahn, Ralph</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Kummerow, Christian</creatorcontrib><creatorcontrib>L’Ecuyer, Tristan</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Myhre, Gunnar</creatorcontrib><creatorcontrib>Quaas, Johannes</creatorcontrib><creatorcontrib>Rosenfeld, Daniel</creatorcontrib><creatorcontrib>Samset, Bjorn</creatorcontrib><creatorcontrib>Seifert, Axel</creatorcontrib><creatorcontrib>Stephens, Graeme</creatorcontrib><creatorcontrib>Tao, Wei-Kuo</creatorcontrib><title>Multifaceted aerosol effects on precipitation</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.</description><subject>704/106/35/824</subject><subject>704/106/694</subject><subject>Aerosol effects</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Balances (scales)</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Convergence zones</subject><subject>Crystals</subject><subject>Droplets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Energy balance</subject><subject>Environmental impact</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Global aerosols</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global precipitation</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Intertropical convergence zone</subject><subject>Mean precipitation</subject><subject>Precipitation</subject><subject>Precipitation patterns</subject><subject>Review Article</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3Hd2dEFVCkIhaYLdcco1QhCbY78PYYAmJjOv_wX44-Qs4ZXDIQ9ipLpjSjwCUFJi2n-oAsmFGcQgv28FfbVh6Tk5x3ABqkUQtCH_Z96aIPWPCl8ZjGPPYNxoih5GYcmilh6Kau-NKNwyk5ir7PePZzl-T59uZptaabx7v71fWGBg5QaFA2CCmitxhlnRFSWh98BFAGg9ZeMyk0cG-U0WErUSvLfETrcRtDEGJJLubeKY3ve8zF7cZ9GuqkE9AyYMYoWV18doX6dU4Y3ZS6N58-HAP3hcXNWFzF4r6xOF1DYg7lah5eMf1V_5P6BCN8ZLM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Stier, Philip</creator><creator>van den Heever, Susan C.</creator><creator>Christensen, Matthew W.</creator><creator>Gryspeerdt, Edward</creator><creator>Dagan, Guy</creator><creator>Saleeby, Stephen M.</creator><creator>Bollasina, Massimo</creator><creator>Donner, Leo</creator><creator>Emanuel, Kerry</creator><creator>Ekman, Annica M. L.</creator><creator>Feingold, Graham</creator><creator>Field, Paul</creator><creator>Forster, Piers</creator><creator>Haywood, Jim</creator><creator>Kahn, Ralph</creator><creator>Koren, Ilan</creator><creator>Kummerow, Christian</creator><creator>L’Ecuyer, Tristan</creator><creator>Lohmann, Ulrike</creator><creator>Ming, Yi</creator><creator>Myhre, Gunnar</creator><creator>Quaas, Johannes</creator><creator>Rosenfeld, Daniel</creator><creator>Samset, Bjorn</creator><creator>Seifert, Axel</creator><creator>Stephens, Graeme</creator><creator>Tao, Wei-Kuo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0002-3815-4756</orcidid><orcidid>https://orcid.org/0000-0001-8013-1833</orcidid><orcidid>https://orcid.org/0000-0002-6078-0171</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid><orcidid>https://orcid.org/0000-0002-2066-2082</orcidid><orcidid>https://orcid.org/0000-0001-9760-3550</orcidid><orcidid>https://orcid.org/0000-0001-7057-194X</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-5234-6359</orcidid><orcidid>https://orcid.org/0000-0002-8391-6334</orcidid><orcidid>https://orcid.org/0000-0002-0774-2926</orcidid><orcidid>https://orcid.org/0000-0002-4309-476X</orcidid><orcidid>https://orcid.org/0000-0001-7509-7650</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0001-8708-008X</orcidid><orcidid>https://orcid.org/0000-0002-2143-6634</orcidid><orcidid>https://orcid.org/0000-0002-5940-2114</orcidid><orcidid>https://orcid.org/0000-0002-1487-7300</orcidid><orcidid>https://orcid.org/0000-0001-9843-3864</orcidid><orcidid>https://orcid.org/0000-0002-7584-4836</orcidid></search><sort><creationdate>20240801</creationdate><title>Multifaceted aerosol effects on precipitation</title><author>Stier, Philip ; van den Heever, Susan C. ; Christensen, Matthew W. ; Gryspeerdt, Edward ; Dagan, Guy ; Saleeby, Stephen M. ; Bollasina, Massimo ; Donner, Leo ; Emanuel, Kerry ; Ekman, Annica M. L. ; Feingold, Graham ; Field, Paul ; Forster, Piers ; Haywood, Jim ; Kahn, Ralph ; Koren, Ilan ; Kummerow, Christian ; L’Ecuyer, Tristan ; Lohmann, Ulrike ; Ming, Yi ; Myhre, Gunnar ; Quaas, Johannes ; Rosenfeld, Daniel ; Samset, Bjorn ; Seifert, Axel ; Stephens, Graeme ; Tao, Wei-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c58c343fa8ef44753448acaf0057ec66a6143602a7576cb4e6581afe8aebfcc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>704/106/35/824</topic><topic>704/106/694</topic><topic>Aerosol effects</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Balances (scales)</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Convergence zones</topic><topic>Crystals</topic><topic>Droplets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Energy balance</topic><topic>Environmental impact</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Global aerosols</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global precipitation</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Intertropical convergence zone</topic><topic>Mean precipitation</topic><topic>Precipitation</topic><topic>Precipitation patterns</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>van den Heever, Susan C.</creatorcontrib><creatorcontrib>Christensen, Matthew W.</creatorcontrib><creatorcontrib>Gryspeerdt, Edward</creatorcontrib><creatorcontrib>Dagan, Guy</creatorcontrib><creatorcontrib>Saleeby, Stephen M.</creatorcontrib><creatorcontrib>Bollasina, Massimo</creatorcontrib><creatorcontrib>Donner, Leo</creatorcontrib><creatorcontrib>Emanuel, Kerry</creatorcontrib><creatorcontrib>Ekman, Annica M. L.</creatorcontrib><creatorcontrib>Feingold, Graham</creatorcontrib><creatorcontrib>Field, Paul</creatorcontrib><creatorcontrib>Forster, Piers</creatorcontrib><creatorcontrib>Haywood, Jim</creatorcontrib><creatorcontrib>Kahn, Ralph</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Kummerow, Christian</creatorcontrib><creatorcontrib>L’Ecuyer, Tristan</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Ming, Yi</creatorcontrib><creatorcontrib>Myhre, Gunnar</creatorcontrib><creatorcontrib>Quaas, Johannes</creatorcontrib><creatorcontrib>Rosenfeld, Daniel</creatorcontrib><creatorcontrib>Samset, Bjorn</creatorcontrib><creatorcontrib>Seifert, Axel</creatorcontrib><creatorcontrib>Stephens, Graeme</creatorcontrib><creatorcontrib>Tao, Wei-Kuo</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stier, Philip</au><au>van den Heever, Susan C.</au><au>Christensen, Matthew W.</au><au>Gryspeerdt, Edward</au><au>Dagan, Guy</au><au>Saleeby, Stephen M.</au><au>Bollasina, Massimo</au><au>Donner, Leo</au><au>Emanuel, Kerry</au><au>Ekman, Annica M. L.</au><au>Feingold, Graham</au><au>Field, Paul</au><au>Forster, Piers</au><au>Haywood, Jim</au><au>Kahn, Ralph</au><au>Koren, Ilan</au><au>Kummerow, Christian</au><au>L’Ecuyer, Tristan</au><au>Lohmann, Ulrike</au><au>Ming, Yi</au><au>Myhre, Gunnar</au><au>Quaas, Johannes</au><au>Rosenfeld, Daniel</au><au>Samset, Bjorn</au><au>Seifert, Axel</au><au>Stephens, Graeme</au><au>Tao, Wei-Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifaceted aerosol effects on precipitation</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>17</volume><issue>8</issue><spage>719</spage><epage>732</epage><pages>719-732</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-024-01482-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0002-3815-4756</orcidid><orcidid>https://orcid.org/0000-0001-8013-1833</orcidid><orcidid>https://orcid.org/0000-0002-6078-0171</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid><orcidid>https://orcid.org/0000-0002-2066-2082</orcidid><orcidid>https://orcid.org/0000-0001-9760-3550</orcidid><orcidid>https://orcid.org/0000-0001-7057-194X</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-5234-6359</orcidid><orcidid>https://orcid.org/0000-0002-8391-6334</orcidid><orcidid>https://orcid.org/0000-0002-0774-2926</orcidid><orcidid>https://orcid.org/0000-0002-4309-476X</orcidid><orcidid>https://orcid.org/0000-0001-7509-7650</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0001-8708-008X</orcidid><orcidid>https://orcid.org/0000-0002-2143-6634</orcidid><orcidid>https://orcid.org/0000-0002-5940-2114</orcidid><orcidid>https://orcid.org/0000-0002-1487-7300</orcidid><orcidid>https://orcid.org/0000-0001-9843-3864</orcidid><orcidid>https://orcid.org/0000-0002-7584-4836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2024-08, Vol.17 (8), p.719-732
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_3091017754
source Nature; SpringerNature Journals
subjects 704/106/35/824
704/106/694
Aerosol effects
Aerosol-cloud interactions
Aerosols
Balances (scales)
Climate change
Climate models
Climate prediction
Cloud droplets
Clouds
Convergence zones
Crystals
Droplets
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Energy balance
Environmental impact
Evaporation
Evaporation rate
Geochemistry
Geology
Geophysics/Geodesy
Global aerosols
Global climate
Global climate models
Global precipitation
Ice
Ice crystals
Intertropical convergence zone
Mean precipitation
Precipitation
Precipitation patterns
Review Article
title Multifaceted aerosol effects on precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifaceted%20aerosol%20effects%20on%20precipitation&rft.jtitle=Nature%20geoscience&rft.au=Stier,%20Philip&rft.date=2024-08-01&rft.volume=17&rft.issue=8&rft.spage=719&rft.epage=732&rft.pages=719-732&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-024-01482-6&rft_dat=%3Cproquest_cross%3E3091017754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091017754&rft_id=info:pmid/&rfr_iscdi=true