Combining Neural Architecture Search and Automatic Code Optimization: A Survey
Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Ne...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bachiri, Inas Benmeziane, Hadjer Smail Niar Baghdadi, Riyadh Hamza Ouarnoughi Aries, Abdelkrime |
description | Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3091014110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091014110</sourcerecordid><originalsourceid>FETCH-proquest_journals_30910141103</originalsourceid><addsrcrecordid>eNqNissKgkAYRocgSMp3-KG1MBftthMpWtmi9jLpX43ojM0lqKfPRQ_Q6uOc801IxIVgySblfEZi51pKKV-teZaJiJSF6a9KK32HEoOVHeS2fiiPtQ8W4YxyRJC6gTx400uvaihMg3AavOrVZxRG7yCHc7AvfC_I9CY7h_Fv52R52F-KYzJY8wzofNWaYPWYKkG3jLKUMSr-e30BrYU9tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091014110</pqid></control><display><type>article</type><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><source>Free E- Journals</source><creator>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</creator><creatorcontrib>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</creatorcontrib><description>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ant colony optimization ; Compilers ; Computer architecture ; Hardware ; Neural networks ; Searching</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bachiri, Inas</creatorcontrib><creatorcontrib>Benmeziane, Hadjer</creatorcontrib><creatorcontrib>Smail Niar</creatorcontrib><creatorcontrib>Baghdadi, Riyadh</creatorcontrib><creatorcontrib>Hamza Ouarnoughi</creatorcontrib><creatorcontrib>Aries, Abdelkrime</creatorcontrib><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><title>arXiv.org</title><description>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</description><subject>Ant colony optimization</subject><subject>Compilers</subject><subject>Computer architecture</subject><subject>Hardware</subject><subject>Neural networks</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAYRocgSMp3-KG1MBftthMpWtmi9jLpX43ojM0lqKfPRQ_Q6uOc801IxIVgySblfEZi51pKKV-teZaJiJSF6a9KK32HEoOVHeS2fiiPtQ8W4YxyRJC6gTx400uvaihMg3AavOrVZxRG7yCHc7AvfC_I9CY7h_Fv52R52F-KYzJY8wzofNWaYPWYKkG3jLKUMSr-e30BrYU9tg</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Bachiri, Inas</creator><creator>Benmeziane, Hadjer</creator><creator>Smail Niar</creator><creator>Baghdadi, Riyadh</creator><creator>Hamza Ouarnoughi</creator><creator>Aries, Abdelkrime</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240807</creationdate><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><author>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30910141103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ant colony optimization</topic><topic>Compilers</topic><topic>Computer architecture</topic><topic>Hardware</topic><topic>Neural networks</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Bachiri, Inas</creatorcontrib><creatorcontrib>Benmeziane, Hadjer</creatorcontrib><creatorcontrib>Smail Niar</creatorcontrib><creatorcontrib>Baghdadi, Riyadh</creatorcontrib><creatorcontrib>Hamza Ouarnoughi</creatorcontrib><creatorcontrib>Aries, Abdelkrime</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachiri, Inas</au><au>Benmeziane, Hadjer</au><au>Smail Niar</au><au>Baghdadi, Riyadh</au><au>Hamza Ouarnoughi</au><au>Aries, Abdelkrime</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-08-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3091014110 |
source | Free E- Journals |
subjects | Ant colony optimization Compilers Computer architecture Hardware Neural networks Searching |
title | Combining Neural Architecture Search and Automatic Code Optimization: A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combining%20Neural%20Architecture%20Search%20and%20Automatic%20Code%20Optimization:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Bachiri,%20Inas&rft.date=2024-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3091014110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091014110&rft_id=info:pmid/&rfr_iscdi=true |