Combining Neural Architecture Search and Automatic Code Optimization: A Survey

Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Bachiri, Inas, Benmeziane, Hadjer, Smail Niar, Baghdadi, Riyadh, Hamza Ouarnoughi, Aries, Abdelkrime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bachiri, Inas
Benmeziane, Hadjer
Smail Niar
Baghdadi, Riyadh
Hamza Ouarnoughi
Aries, Abdelkrime
description Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3091014110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091014110</sourcerecordid><originalsourceid>FETCH-proquest_journals_30910141103</originalsourceid><addsrcrecordid>eNqNissKgkAYRocgSMp3-KG1MBftthMpWtmi9jLpX43ojM0lqKfPRQ_Q6uOc801IxIVgySblfEZi51pKKV-teZaJiJSF6a9KK32HEoOVHeS2fiiPtQ8W4YxyRJC6gTx400uvaihMg3AavOrVZxRG7yCHc7AvfC_I9CY7h_Fv52R52F-KYzJY8wzofNWaYPWYKkG3jLKUMSr-e30BrYU9tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091014110</pqid></control><display><type>article</type><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><source>Free E- Journals</source><creator>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</creator><creatorcontrib>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</creatorcontrib><description>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ant colony optimization ; Compilers ; Computer architecture ; Hardware ; Neural networks ; Searching</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bachiri, Inas</creatorcontrib><creatorcontrib>Benmeziane, Hadjer</creatorcontrib><creatorcontrib>Smail Niar</creatorcontrib><creatorcontrib>Baghdadi, Riyadh</creatorcontrib><creatorcontrib>Hamza Ouarnoughi</creatorcontrib><creatorcontrib>Aries, Abdelkrime</creatorcontrib><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><title>arXiv.org</title><description>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</description><subject>Ant colony optimization</subject><subject>Compilers</subject><subject>Computer architecture</subject><subject>Hardware</subject><subject>Neural networks</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAYRocgSMp3-KG1MBftthMpWtmi9jLpX43ojM0lqKfPRQ_Q6uOc801IxIVgySblfEZi51pKKV-teZaJiJSF6a9KK32HEoOVHeS2fiiPtQ8W4YxyRJC6gTx400uvaihMg3AavOrVZxRG7yCHc7AvfC_I9CY7h_Fv52R52F-KYzJY8wzofNWaYPWYKkG3jLKUMSr-e30BrYU9tg</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Bachiri, Inas</creator><creator>Benmeziane, Hadjer</creator><creator>Smail Niar</creator><creator>Baghdadi, Riyadh</creator><creator>Hamza Ouarnoughi</creator><creator>Aries, Abdelkrime</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240807</creationdate><title>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</title><author>Bachiri, Inas ; Benmeziane, Hadjer ; Smail Niar ; Baghdadi, Riyadh ; Hamza Ouarnoughi ; Aries, Abdelkrime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30910141103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ant colony optimization</topic><topic>Compilers</topic><topic>Computer architecture</topic><topic>Hardware</topic><topic>Neural networks</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Bachiri, Inas</creatorcontrib><creatorcontrib>Benmeziane, Hadjer</creatorcontrib><creatorcontrib>Smail Niar</creatorcontrib><creatorcontrib>Baghdadi, Riyadh</creatorcontrib><creatorcontrib>Hamza Ouarnoughi</creatorcontrib><creatorcontrib>Aries, Abdelkrime</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachiri, Inas</au><au>Benmeziane, Hadjer</au><au>Smail Niar</au><au>Baghdadi, Riyadh</au><au>Hamza Ouarnoughi</au><au>Aries, Abdelkrime</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combining Neural Architecture Search and Automatic Code Optimization: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2024-08-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Deep Learning models have experienced exponential growth in complexity and resource demands in recent years. Accelerating these models for efficient execution on resource-constrained devices has become more crucial than ever. Two notable techniques employed to achieve this goal are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO). HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks for efficient mapping and inference on the target hardware. This survey explores recent works that combine these two techniques within a single framework. We present the fundamental principles of both domains and demonstrate their sub-optimality when performed independently. We then investigate their integration into a joint optimization process that we call Hardware Aware-Neural Architecture and Compiler Optimizations co-Search (NACOS).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3091014110
source Free E- Journals
subjects Ant colony optimization
Compilers
Computer architecture
Hardware
Neural networks
Searching
title Combining Neural Architecture Search and Automatic Code Optimization: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combining%20Neural%20Architecture%20Search%20and%20Automatic%20Code%20Optimization:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Bachiri,%20Inas&rft.date=2024-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3091014110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091014110&rft_id=info:pmid/&rfr_iscdi=true