PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics

Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2024-08, Vol.36 (22), p.13665-13687
Hauptverfasser: Rahman, Md Asif, Zhang, Tianjie, Lu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13687
container_issue 22
container_start_page 13665
container_title Neural computing & applications
container_volume 36
creator Rahman, Md Asif
Zhang, Tianjie
Lu, Yang
description Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.
doi_str_mv 10.1007/s00521-024-09791-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091014095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091014095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMdOJOylqi6W66D6kmUwn7bxMpsj8e2NHcOfqwD3nfBcOQrcU7inA7CEAJIwSYIKAnElKhjM0oYJzwiHJztEEpIh2KvglugphDwAizZIJqj-W6zWZL94ecVcOwZlAXFO0vrY5buzR6ypK_9X6A45XXLpdSQqX28r1A-68zZ3pXdvgtsBW-2ogemexsbVtelwOudcn9-AiJLKv0UWhq2BvfnWKNi_Pm_mCrN5fl_OnFTGMyYGI1OSzJJM2pyzLOKWMgaE5FywzM5lwJiDRmTVsC5ql0myNMJlllvNUslzzKbobsZ1vP4829GrfHn0TPyoOkgIVEClTxMaU8W0I3haq867WflAU1M-qalxVxVXVaVU1xBIfSyGGm531f-h_Wt_05HtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091014095</pqid></control><display><type>article</type><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</creator><creatorcontrib>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</creatorcontrib><description>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-09791-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Boundary conditions ; Cement hydration ; Cement paste ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Heat generation ; Hydration ; Image Processing and Computer Vision ; Kinetics ; Machine learning ; Material properties ; Neural networks ; Original Article ; Partial differential equations ; Physics ; Prediction models ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2024-08, Vol.36 (22), p.13665-13687</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</cites><orcidid>0000-0003-2330-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-09791-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-09791-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rahman, Md Asif</creatorcontrib><creatorcontrib>Zhang, Tianjie</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Boundary conditions</subject><subject>Cement hydration</subject><subject>Cement paste</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Heat generation</subject><subject>Hydration</subject><subject>Image Processing and Computer Vision</subject><subject>Kinetics</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMdOJOylqi6W66D6kmUwn7bxMpsj8e2NHcOfqwD3nfBcOQrcU7inA7CEAJIwSYIKAnElKhjM0oYJzwiHJztEEpIh2KvglugphDwAizZIJqj-W6zWZL94ecVcOwZlAXFO0vrY5buzR6ypK_9X6A45XXLpdSQqX28r1A-68zZ3pXdvgtsBW-2ogemexsbVtelwOudcn9-AiJLKv0UWhq2BvfnWKNi_Pm_mCrN5fl_OnFTGMyYGI1OSzJJM2pyzLOKWMgaE5FywzM5lwJiDRmTVsC5ql0myNMJlllvNUslzzKbobsZ1vP4829GrfHn0TPyoOkgIVEClTxMaU8W0I3haq867WflAU1M-qalxVxVXVaVU1xBIfSyGGm531f-h_Wt_05HtK</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rahman, Md Asif</creator><creator>Zhang, Tianjie</creator><creator>Lu, Yang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2330-4237</orcidid></search><sort><creationdate>20240801</creationdate><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><author>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Boundary conditions</topic><topic>Cement hydration</topic><topic>Cement paste</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Heat generation</topic><topic>Hydration</topic><topic>Image Processing and Computer Vision</topic><topic>Kinetics</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md Asif</creatorcontrib><creatorcontrib>Zhang, Tianjie</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md Asif</au><au>Zhang, Tianjie</au><au>Lu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>22</issue><spage>13665</spage><epage>13687</epage><pages>13665-13687</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-09791-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2330-4237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-08, Vol.36 (22), p.13665-13687
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_3091014095
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Artificial Intelligence
Boundary conditions
Cement hydration
Cement paste
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Heat generation
Hydration
Image Processing and Computer Vision
Kinetics
Machine learning
Material properties
Neural networks
Original Article
Partial differential equations
Physics
Prediction models
Probability and Statistics in Computer Science
title PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PINN-CHK:%20physics-informed%20neural%20network%20for%20high-fidelity%20prediction%20of%20early-age%20cement%20hydration%20kinetics&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Rahman,%20Md%20Asif&rft.date=2024-08-01&rft.volume=36&rft.issue=22&rft.spage=13665&rft.epage=13687&rft.pages=13665-13687&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-09791-y&rft_dat=%3Cproquest_cross%3E3091014095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091014095&rft_id=info:pmid/&rfr_iscdi=true