PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics
Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-08, Vol.36 (22), p.13665-13687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13687 |
---|---|
container_issue | 22 |
container_start_page | 13665 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Rahman, Md Asif Zhang, Tianjie Lu, Yang |
description | Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials. |
doi_str_mv | 10.1007/s00521-024-09791-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3091014095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3091014095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMdOJOylqi6W66D6kmUwn7bxMpsj8e2NHcOfqwD3nfBcOQrcU7inA7CEAJIwSYIKAnElKhjM0oYJzwiHJztEEpIh2KvglugphDwAizZIJqj-W6zWZL94ecVcOwZlAXFO0vrY5buzR6ypK_9X6A45XXLpdSQqX28r1A-68zZ3pXdvgtsBW-2ogemexsbVtelwOudcn9-AiJLKv0UWhq2BvfnWKNi_Pm_mCrN5fl_OnFTGMyYGI1OSzJJM2pyzLOKWMgaE5FywzM5lwJiDRmTVsC5ql0myNMJlllvNUslzzKbobsZ1vP4829GrfHn0TPyoOkgIVEClTxMaU8W0I3haq867WflAU1M-qalxVxVXVaVU1xBIfSyGGm531f-h_Wt_05HtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091014095</pqid></control><display><type>article</type><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</creator><creatorcontrib>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</creatorcontrib><description>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-09791-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Boundary conditions ; Cement hydration ; Cement paste ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Heat generation ; Hydration ; Image Processing and Computer Vision ; Kinetics ; Machine learning ; Material properties ; Neural networks ; Original Article ; Partial differential equations ; Physics ; Prediction models ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2024-08, Vol.36 (22), p.13665-13687</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</cites><orcidid>0000-0003-2330-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-09791-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-09791-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rahman, Md Asif</creatorcontrib><creatorcontrib>Zhang, Tianjie</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Boundary conditions</subject><subject>Cement hydration</subject><subject>Cement paste</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Heat generation</subject><subject>Hydration</subject><subject>Image Processing and Computer Vision</subject><subject>Kinetics</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMdOJOylqi6W66D6kmUwn7bxMpsj8e2NHcOfqwD3nfBcOQrcU7inA7CEAJIwSYIKAnElKhjM0oYJzwiHJztEEpIh2KvglugphDwAizZIJqj-W6zWZL94ecVcOwZlAXFO0vrY5buzR6ypK_9X6A45XXLpdSQqX28r1A-68zZ3pXdvgtsBW-2ogemexsbVtelwOudcn9-AiJLKv0UWhq2BvfnWKNi_Pm_mCrN5fl_OnFTGMyYGI1OSzJJM2pyzLOKWMgaE5FywzM5lwJiDRmTVsC5ql0myNMJlllvNUslzzKbobsZ1vP4829GrfHn0TPyoOkgIVEClTxMaU8W0I3haq867WflAU1M-qalxVxVXVaVU1xBIfSyGGm531f-h_Wt_05HtK</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rahman, Md Asif</creator><creator>Zhang, Tianjie</creator><creator>Lu, Yang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2330-4237</orcidid></search><sort><creationdate>20240801</creationdate><title>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</title><author>Rahman, Md Asif ; Zhang, Tianjie ; Lu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229y-46cd7589ed1288311220c1d3428c79532405a8ec2b0a269cbc4c8e2e33692da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Boundary conditions</topic><topic>Cement hydration</topic><topic>Cement paste</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Heat generation</topic><topic>Hydration</topic><topic>Image Processing and Computer Vision</topic><topic>Kinetics</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md Asif</creatorcontrib><creatorcontrib>Zhang, Tianjie</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md Asif</au><au>Zhang, Tianjie</au><au>Lu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>22</issue><spage>13665</spage><epage>13687</epage><pages>13665-13687</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Cement hydration kinetics, characterized by heat generation in early-age concrete, poses a modeling challenge. This work proposes a physics-informed neural network (PINN) named PINN-CHK designed for cement hydration kinetics, to predict early-age temperature rises in cement paste. PINN-CHK leverages data-driven solutions to craft a high-fidelity prediction model, encompassing material properties and maturity functions in cement hydration. Trained on heated cement paste data, it simultaneously fits experimental results and underlying physics, yielding a mesh-free simulation. Incorporating governing partial differential equations (PDEs), and initial and boundary conditions into its loss function, PINN-CHK architecture undergoes rigorous benchmark testing, demonstrating unparalleled predictive accuracy compared to conventional deep-learning methods. It excels in predicting complete temperature fields during spatial–temporal cement hydration, achieving a remarkable relative L2 error as low as 0.00341. PINN-CHK achieves exceptional convergence and accuracy with only 5% of the training data, ushering in a new era in this crucial field. This innovative approach bridges the gap between theory and practice, offering an attractive alternative to conventional finite element solvers for enhanced comprehension of cement hydration kinetics and concrete maturity and strength development in cement-based materials.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-09791-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2330-4237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-08, Vol.36 (22), p.13665-13687 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_3091014095 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Artificial Intelligence Boundary conditions Cement hydration Cement paste Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Heat generation Hydration Image Processing and Computer Vision Kinetics Machine learning Material properties Neural networks Original Article Partial differential equations Physics Prediction models Probability and Statistics in Computer Science |
title | PINN-CHK: physics-informed neural network for high-fidelity prediction of early-age cement hydration kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PINN-CHK:%20physics-informed%20neural%20network%20for%20high-fidelity%20prediction%20of%20early-age%20cement%20hydration%20kinetics&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Rahman,%20Md%20Asif&rft.date=2024-08-01&rft.volume=36&rft.issue=22&rft.spage=13665&rft.epage=13687&rft.pages=13665-13687&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-09791-y&rft_dat=%3Cproquest_cross%3E3091014095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3091014095&rft_id=info:pmid/&rfr_iscdi=true |