A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications

A novel 2-D circularly polarized (CP) fixed-frequency beam-scanning leakywave antenna (LWA) is developed. The entire 2-D LWA comprises 16 groove gap waveguides (GGWs), a pair of 1:16 power dividers, and an array of 16\times 24 reconfigurable units. Each unit depends on a corner-cut patch to realiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2024-08, Vol.72 (8), p.6530-6540
Hauptverfasser: Liu, Shan, Li, Zheng, Chen, Meie, Wang, Junhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6540
container_issue 8
container_start_page 6530
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Liu, Shan
Li, Zheng
Chen, Meie
Wang, Junhong
description A novel 2-D circularly polarized (CP) fixed-frequency beam-scanning leakywave antenna (LWA) is developed. The entire 2-D LWA comprises 16 groove gap waveguides (GGWs), a pair of 1:16 power dividers, and an array of 16\times 24 reconfigurable units. Each unit depends on a corner-cut patch to realize CP properties in millimeter-wave (mm-wave) band. Through the manipulation of PIN diodes loaded in the units, the phase of radiated field of each unit can be switched between two opposite phases (denoted as the "1" state and the "-1" state) with the same radiation strength. By controlling the phase compensation provided by each perturbation unit, a quasi-uniform phase distribution is constructed on the antenna aperture, producing a radiation beam. Subsequently, 2-D beam-scanning at a fixed frequency can be achieved by manipulating the phase distribution. The entire configuration of antenna relies on GGW, contributing to a reduction in dielectric loss in the mm-waveband. The presented antenna is fabricated and measured. The measured peak realized gain of this antenna can reach 20.6 dBic at 33 GHz with good CP characteristic, and the measured results are given to confirm the feasibility of the proposed antenna for mm-wave satellite communication.
doi_str_mv 10.1109/TAP.2024.3424589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3090991320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10599210</ieee_id><sourcerecordid>3090991320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-e07e34f71f2c16e1a10982bc2250a2ac917c7ca9b587d6ec8f5f9eba60ae4c403</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYnaxHefDYwgUkIqo1CLYIte9IJfEKU5CCX89jtqB6XR3793p_RC6ZHTCGJU3y3Q-4ZSLSSC4CBN5hEYsDBPCOWfHaEQpS4jk0fspOmuajW9FIsQI7VLMyR3OjNNdqVzZ43ntq_mFNZ6aH1iTqYOvDqzu8S2oiiy0stbYDzwD9dnv1Dfg1LZgrcJF7fCzKUtTQQuOvA27hWrBT1rAWV1VnTVataa2zTk6KVTZwMWhjtHr9H6ZPZLZy8NTls6IZnHYEqAxBKKIWcE1i4ApHzXhK815SBVXWrJYx1rJVZjE6wh0UoSFhJWKqAKhBQ3G6Hp_d-tqH6Np803dOetf5gGVVEoW8EFF9yrt6qZxUORbZyrl-pzRfMCbe7z5gDc_4PWWq73FAMA_eSglZzT4A2nYd5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090991320</pqid></control><display><type>article</type><title>A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Shan ; Li, Zheng ; Chen, Meie ; Wang, Junhong</creator><creatorcontrib>Liu, Shan ; Li, Zheng ; Chen, Meie ; Wang, Junhong</creatorcontrib><description>A novel 2-D circularly polarized (CP) fixed-frequency beam-scanning leakywave antenna (LWA) is developed. The entire 2-D LWA comprises 16 groove gap waveguides (GGWs), a pair of 1:16 power dividers, and an array of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;16\times 24 &lt;/tex-math&gt;&lt;/inline-formula&gt; reconfigurable units. Each unit depends on a corner-cut patch to realize CP properties in millimeter-wave (mm-wave) band. Through the manipulation of PIN diodes loaded in the units, the phase of radiated field of each unit can be switched between two opposite phases (denoted as the "1" state and the "-1" state) with the same radiation strength. By controlling the phase compensation provided by each perturbation unit, a quasi-uniform phase distribution is constructed on the antenna aperture, producing a radiation beam. Subsequently, 2-D beam-scanning at a fixed frequency can be achieved by manipulating the phase distribution. The entire configuration of antenna relies on GGW, contributing to a reduction in dielectric loss in the mm-waveband. The presented antenna is fabricated and measured. The measured peak realized gain of this antenna can reach 20.6 dBic at 33 GHz with good CP characteristic, and the measured results are given to confirm the feasibility of the proposed antenna for mm-wave satellite communication.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3424589</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna measurements ; Antennas ; Circular polarization ; Circularly polarized (CP) ; Dielectric loss ; Dielectric strength ; fixed-frequency beam-scanning ; groove gap waveguide (GGW) ; Grooves ; leakywave antenna (LWA) ; Millimeter waves ; Phase distribution ; Phased arrays ; PIN diodes ; Power dividers ; Radiation ; reconfigurable ; Satellite antennas ; Satellite communications ; Substrates ; Waveguides</subject><ispartof>IEEE transactions on antennas and propagation, 2024-08, Vol.72 (8), p.6530-6540</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-e07e34f71f2c16e1a10982bc2250a2ac917c7ca9b587d6ec8f5f9eba60ae4c403</cites><orcidid>0000-0003-1475-5984 ; 0000-0002-6765-8128 ; 0000-0002-2859-3616 ; 0009-0004-4676-6906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10599210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10599210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Chen, Meie</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><title>A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A novel 2-D circularly polarized (CP) fixed-frequency beam-scanning leakywave antenna (LWA) is developed. The entire 2-D LWA comprises 16 groove gap waveguides (GGWs), a pair of 1:16 power dividers, and an array of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;16\times 24 &lt;/tex-math&gt;&lt;/inline-formula&gt; reconfigurable units. Each unit depends on a corner-cut patch to realize CP properties in millimeter-wave (mm-wave) band. Through the manipulation of PIN diodes loaded in the units, the phase of radiated field of each unit can be switched between two opposite phases (denoted as the "1" state and the "-1" state) with the same radiation strength. By controlling the phase compensation provided by each perturbation unit, a quasi-uniform phase distribution is constructed on the antenna aperture, producing a radiation beam. Subsequently, 2-D beam-scanning at a fixed frequency can be achieved by manipulating the phase distribution. The entire configuration of antenna relies on GGW, contributing to a reduction in dielectric loss in the mm-waveband. The presented antenna is fabricated and measured. The measured peak realized gain of this antenna can reach 20.6 dBic at 33 GHz with good CP characteristic, and the measured results are given to confirm the feasibility of the proposed antenna for mm-wave satellite communication.</description><subject>Antenna arrays</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>Circular polarization</subject><subject>Circularly polarized (CP)</subject><subject>Dielectric loss</subject><subject>Dielectric strength</subject><subject>fixed-frequency beam-scanning</subject><subject>groove gap waveguide (GGW)</subject><subject>Grooves</subject><subject>leakywave antenna (LWA)</subject><subject>Millimeter waves</subject><subject>Phase distribution</subject><subject>Phased arrays</subject><subject>PIN diodes</subject><subject>Power dividers</subject><subject>Radiation</subject><subject>reconfigurable</subject><subject>Satellite antennas</subject><subject>Satellite communications</subject><subject>Substrates</subject><subject>Waveguides</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYnaxHefDYwgUkIqo1CLYIte9IJfEKU5CCX89jtqB6XR3793p_RC6ZHTCGJU3y3Q-4ZSLSSC4CBN5hEYsDBPCOWfHaEQpS4jk0fspOmuajW9FIsQI7VLMyR3OjNNdqVzZ43ntq_mFNZ6aH1iTqYOvDqzu8S2oiiy0stbYDzwD9dnv1Dfg1LZgrcJF7fCzKUtTQQuOvA27hWrBT1rAWV1VnTVataa2zTk6KVTZwMWhjtHr9H6ZPZLZy8NTls6IZnHYEqAxBKKIWcE1i4ApHzXhK815SBVXWrJYx1rJVZjE6wh0UoSFhJWKqAKhBQ3G6Hp_d-tqH6Np803dOetf5gGVVEoW8EFF9yrt6qZxUORbZyrl-pzRfMCbe7z5gDc_4PWWq73FAMA_eSglZzT4A2nYd5I</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Shan</creator><creator>Li, Zheng</creator><creator>Chen, Meie</creator><creator>Wang, Junhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1475-5984</orcidid><orcidid>https://orcid.org/0000-0002-6765-8128</orcidid><orcidid>https://orcid.org/0000-0002-2859-3616</orcidid><orcidid>https://orcid.org/0009-0004-4676-6906</orcidid></search><sort><creationdate>20240801</creationdate><title>A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications</title><author>Liu, Shan ; Li, Zheng ; Chen, Meie ; Wang, Junhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-e07e34f71f2c16e1a10982bc2250a2ac917c7ca9b587d6ec8f5f9eba60ae4c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna arrays</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>Circular polarization</topic><topic>Circularly polarized (CP)</topic><topic>Dielectric loss</topic><topic>Dielectric strength</topic><topic>fixed-frequency beam-scanning</topic><topic>groove gap waveguide (GGW)</topic><topic>Grooves</topic><topic>leakywave antenna (LWA)</topic><topic>Millimeter waves</topic><topic>Phase distribution</topic><topic>Phased arrays</topic><topic>PIN diodes</topic><topic>Power dividers</topic><topic>Radiation</topic><topic>reconfigurable</topic><topic>Satellite antennas</topic><topic>Satellite communications</topic><topic>Substrates</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Chen, Meie</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shan</au><au>Li, Zheng</au><au>Chen, Meie</au><au>Wang, Junhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>72</volume><issue>8</issue><spage>6530</spage><epage>6540</epage><pages>6530-6540</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A novel 2-D circularly polarized (CP) fixed-frequency beam-scanning leakywave antenna (LWA) is developed. The entire 2-D LWA comprises 16 groove gap waveguides (GGWs), a pair of 1:16 power dividers, and an array of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;16\times 24 &lt;/tex-math&gt;&lt;/inline-formula&gt; reconfigurable units. Each unit depends on a corner-cut patch to realize CP properties in millimeter-wave (mm-wave) band. Through the manipulation of PIN diodes loaded in the units, the phase of radiated field of each unit can be switched between two opposite phases (denoted as the "1" state and the "-1" state) with the same radiation strength. By controlling the phase compensation provided by each perturbation unit, a quasi-uniform phase distribution is constructed on the antenna aperture, producing a radiation beam. Subsequently, 2-D beam-scanning at a fixed frequency can be achieved by manipulating the phase distribution. The entire configuration of antenna relies on GGW, contributing to a reduction in dielectric loss in the mm-waveband. The presented antenna is fabricated and measured. The measured peak realized gain of this antenna can reach 20.6 dBic at 33 GHz with good CP characteristic, and the measured results are given to confirm the feasibility of the proposed antenna for mm-wave satellite communication.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3424589</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1475-5984</orcidid><orcidid>https://orcid.org/0000-0002-6765-8128</orcidid><orcidid>https://orcid.org/0000-0002-2859-3616</orcidid><orcidid>https://orcid.org/0009-0004-4676-6906</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-08, Vol.72 (8), p.6530-6540
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_3090991320
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Antenna measurements
Antennas
Circular polarization
Circularly polarized (CP)
Dielectric loss
Dielectric strength
fixed-frequency beam-scanning
groove gap waveguide (GGW)
Grooves
leakywave antenna (LWA)
Millimeter waves
Phase distribution
Phased arrays
PIN diodes
Power dividers
Radiation
reconfigurable
Satellite antennas
Satellite communications
Substrates
Waveguides
title A 2-D Circularly Polarized Fixed-Frequency Beam-Scanning Leakywave Antenna for Millimeter-Wave Satellite Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202-D%20Circularly%20Polarized%20Fixed-Frequency%20Beam-Scanning%20Leakywave%20Antenna%20for%20Millimeter-Wave%20Satellite%20Communications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Liu,%20Shan&rft.date=2024-08-01&rft.volume=72&rft.issue=8&rft.spage=6530&rft.epage=6540&rft.pages=6530-6540&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3424589&rft_dat=%3Cproquest_RIE%3E3090991320%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090991320&rft_id=info:pmid/&rft_ieee_id=10599210&rfr_iscdi=true