Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)

This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-08, Vol.16 (15), p.6425
Hauptverfasser: Malviya, Ashwani Kumar, Zarehparast Malekzadeh, Mehdi, Santarremigia, Francisco Enrique, Molero, Gemma Dolores, Villalba Sanchis, Ignacio, Fernández, Pablo Martínez, Yepes, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 6425
container_title Sustainability
container_volume 16
creator Malviya, Ashwani Kumar
Zarehparast Malekzadeh, Mehdi
Santarremigia, Francisco Enrique
Molero, Gemma Dolores
Villalba Sanchis, Ignacio
Fernández, Pablo Martínez
Yepes, Víctor
description This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.
doi_str_mv 10.3390/su16156425
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090958002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515257</galeid><sourcerecordid>A804515257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</originalsourceid><addsrcrecordid>eNpVkd9rGzEMx4-xwUrbl_0Fhr60g2vlc3x3fuxCfwTSXVnal74cis8ODnd2Zvu6pf_F_uM5pLBFAkmIz1cSKMu-ULhkTMBVGGlJeTkp-IfsqICK5hQ4fPyv_pydhrCGZIxRQcuj7E-ziWYwbxiNs8RpMjdakelW9im6EAnajtzYV-OdHZSN2JPZsEEZye1o5U4Udqrv5sWSbxij8kYFstyS52DsijyMfTR5s1yrxL4q8og-mt3sxS_0AzlYfv7QPC6ai5Psk8Y-qNP3fJw93948Te_zeXM3m17Pc1nwKuYFYxWwohTYlVprKJkWtajKmqJWkwoZBdXJSQW8lLUEUXeAFCuhllLRWnN2nJ3t5268-zmqENu1G71NK1sGAgSvAYpEXe6pFfaqNVa76FEm79RgpLNKm9S_rmHCKU-HJcHFgSAxUf2OKxxDaGeLH4fs1z0rvQvBK91uvBnQb1sK7e6l7b-Xsr8fE5Ku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090958002</pqid></control><display><type>article</type><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</creator><creatorcontrib>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</creatorcontrib><description>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16156425</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anniversaries ; Artificial intelligence ; Business performance management ; Costs ; Design optimization ; Economic aspects ; Energy consumption ; Energy storage ; Environmental impact ; Genetic algorithms ; Linear programming ; Literature reviews ; Lithium ; Mathematical optimization ; Methods ; Optimization techniques ; Pareto efficiency ; Power ; R&amp;D ; Raw materials ; Refuse and refuse disposal ; Research &amp; development</subject><ispartof>Sustainability, 2024-08, Vol.16 (15), p.6425</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</cites><orcidid>0009-0009-7652-1439 ; 0000-0003-1435-4005 ; 0000-0002-4091-8719 ; 0000-0001-7296-2282 ; 0000-0001-5466-9269 ; 0000-0001-5488-6001 ; 0000-0002-8246-2510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malviya, Ashwani Kumar</creatorcontrib><creatorcontrib>Zarehparast Malekzadeh, Mehdi</creatorcontrib><creatorcontrib>Santarremigia, Francisco Enrique</creatorcontrib><creatorcontrib>Molero, Gemma Dolores</creatorcontrib><creatorcontrib>Villalba Sanchis, Ignacio</creatorcontrib><creatorcontrib>Fernández, Pablo Martínez</creatorcontrib><creatorcontrib>Yepes, Víctor</creatorcontrib><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><title>Sustainability</title><description>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</description><subject>Algorithms</subject><subject>Anniversaries</subject><subject>Artificial intelligence</subject><subject>Business performance management</subject><subject>Costs</subject><subject>Design optimization</subject><subject>Economic aspects</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Environmental impact</subject><subject>Genetic algorithms</subject><subject>Linear programming</subject><subject>Literature reviews</subject><subject>Lithium</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization techniques</subject><subject>Pareto efficiency</subject><subject>Power</subject><subject>R&amp;D</subject><subject>Raw materials</subject><subject>Refuse and refuse disposal</subject><subject>Research &amp; development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9rGzEMx4-xwUrbl_0Fhr60g2vlc3x3fuxCfwTSXVnal74cis8ODnd2Zvu6pf_F_uM5pLBFAkmIz1cSKMu-ULhkTMBVGGlJeTkp-IfsqICK5hQ4fPyv_pydhrCGZIxRQcuj7E-ziWYwbxiNs8RpMjdakelW9im6EAnajtzYV-OdHZSN2JPZsEEZye1o5U4Udqrv5sWSbxij8kYFstyS52DsijyMfTR5s1yrxL4q8og-mt3sxS_0AzlYfv7QPC6ai5Psk8Y-qNP3fJw93948Te_zeXM3m17Pc1nwKuYFYxWwohTYlVprKJkWtajKmqJWkwoZBdXJSQW8lLUEUXeAFCuhllLRWnN2nJ3t5268-zmqENu1G71NK1sGAgSvAYpEXe6pFfaqNVa76FEm79RgpLNKm9S_rmHCKU-HJcHFgSAxUf2OKxxDaGeLH4fs1z0rvQvBK91uvBnQb1sK7e6l7b-Xsr8fE5Ku</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Malviya, Ashwani Kumar</creator><creator>Zarehparast Malekzadeh, Mehdi</creator><creator>Santarremigia, Francisco Enrique</creator><creator>Molero, Gemma Dolores</creator><creator>Villalba Sanchis, Ignacio</creator><creator>Fernández, Pablo Martínez</creator><creator>Yepes, Víctor</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0009-7652-1439</orcidid><orcidid>https://orcid.org/0000-0003-1435-4005</orcidid><orcidid>https://orcid.org/0000-0002-4091-8719</orcidid><orcidid>https://orcid.org/0000-0001-7296-2282</orcidid><orcidid>https://orcid.org/0000-0001-5466-9269</orcidid><orcidid>https://orcid.org/0000-0001-5488-6001</orcidid><orcidid>https://orcid.org/0000-0002-8246-2510</orcidid></search><sort><creationdate>20240801</creationdate><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><author>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anniversaries</topic><topic>Artificial intelligence</topic><topic>Business performance management</topic><topic>Costs</topic><topic>Design optimization</topic><topic>Economic aspects</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Environmental impact</topic><topic>Genetic algorithms</topic><topic>Linear programming</topic><topic>Literature reviews</topic><topic>Lithium</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization techniques</topic><topic>Pareto efficiency</topic><topic>Power</topic><topic>R&amp;D</topic><topic>Raw materials</topic><topic>Refuse and refuse disposal</topic><topic>Research &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malviya, Ashwani Kumar</creatorcontrib><creatorcontrib>Zarehparast Malekzadeh, Mehdi</creatorcontrib><creatorcontrib>Santarremigia, Francisco Enrique</creatorcontrib><creatorcontrib>Molero, Gemma Dolores</creatorcontrib><creatorcontrib>Villalba Sanchis, Ignacio</creatorcontrib><creatorcontrib>Fernández, Pablo Martínez</creatorcontrib><creatorcontrib>Yepes, Víctor</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malviya, Ashwani Kumar</au><au>Zarehparast Malekzadeh, Mehdi</au><au>Santarremigia, Francisco Enrique</au><au>Molero, Gemma Dolores</au><au>Villalba Sanchis, Ignacio</au><au>Fernández, Pablo Martínez</au><au>Yepes, Víctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</atitle><jtitle>Sustainability</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>6425</spage><pages>6425-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16156425</doi><orcidid>https://orcid.org/0009-0009-7652-1439</orcidid><orcidid>https://orcid.org/0000-0003-1435-4005</orcidid><orcidid>https://orcid.org/0000-0002-4091-8719</orcidid><orcidid>https://orcid.org/0000-0001-7296-2282</orcidid><orcidid>https://orcid.org/0000-0001-5466-9269</orcidid><orcidid>https://orcid.org/0000-0001-5488-6001</orcidid><orcidid>https://orcid.org/0000-0002-8246-2510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-08, Vol.16 (15), p.6425
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3090958002
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Anniversaries
Artificial intelligence
Business performance management
Costs
Design optimization
Economic aspects
Energy consumption
Energy storage
Environmental impact
Genetic algorithms
Linear programming
Literature reviews
Lithium
Mathematical optimization
Methods
Optimization techniques
Pareto efficiency
Power
R&D
Raw materials
Refuse and refuse disposal
Research & development
title Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Life%20Cycle%20Cost%20and%20Environmental%20Impact%20Functions%20of%20NiZn%20Batteries%20by%20Using%20Multi-Objective%20Particle%20Swarm%20Optimization%20(MOPSO)&rft.jtitle=Sustainability&rft.au=Malviya,%20Ashwani%20Kumar&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=6425&rft.pages=6425-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16156425&rft_dat=%3Cgale_proqu%3EA804515257%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090958002&rft_id=info:pmid/&rft_galeid=A804515257&rfr_iscdi=true