Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)
This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-08, Vol.16 (15), p.6425 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 6425 |
container_title | Sustainability |
container_volume | 16 |
creator | Malviya, Ashwani Kumar Zarehparast Malekzadeh, Mehdi Santarremigia, Francisco Enrique Molero, Gemma Dolores Villalba Sanchis, Ignacio Fernández, Pablo Martínez Yepes, Víctor |
description | This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model. |
doi_str_mv | 10.3390/su16156425 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090958002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515257</galeid><sourcerecordid>A804515257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</originalsourceid><addsrcrecordid>eNpVkd9rGzEMx4-xwUrbl_0Fhr60g2vlc3x3fuxCfwTSXVnal74cis8ODnd2Zvu6pf_F_uM5pLBFAkmIz1cSKMu-ULhkTMBVGGlJeTkp-IfsqICK5hQ4fPyv_pydhrCGZIxRQcuj7E-ziWYwbxiNs8RpMjdakelW9im6EAnajtzYV-OdHZSN2JPZsEEZye1o5U4Udqrv5sWSbxij8kYFstyS52DsijyMfTR5s1yrxL4q8og-mt3sxS_0AzlYfv7QPC6ai5Psk8Y-qNP3fJw93948Te_zeXM3m17Pc1nwKuYFYxWwohTYlVprKJkWtajKmqJWkwoZBdXJSQW8lLUEUXeAFCuhllLRWnN2nJ3t5268-zmqENu1G71NK1sGAgSvAYpEXe6pFfaqNVa76FEm79RgpLNKm9S_rmHCKU-HJcHFgSAxUf2OKxxDaGeLH4fs1z0rvQvBK91uvBnQb1sK7e6l7b-Xsr8fE5Ku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090958002</pqid></control><display><type>article</type><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</creator><creatorcontrib>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</creatorcontrib><description>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16156425</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anniversaries ; Artificial intelligence ; Business performance management ; Costs ; Design optimization ; Economic aspects ; Energy consumption ; Energy storage ; Environmental impact ; Genetic algorithms ; Linear programming ; Literature reviews ; Lithium ; Mathematical optimization ; Methods ; Optimization techniques ; Pareto efficiency ; Power ; R&D ; Raw materials ; Refuse and refuse disposal ; Research & development</subject><ispartof>Sustainability, 2024-08, Vol.16 (15), p.6425</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</cites><orcidid>0009-0009-7652-1439 ; 0000-0003-1435-4005 ; 0000-0002-4091-8719 ; 0000-0001-7296-2282 ; 0000-0001-5466-9269 ; 0000-0001-5488-6001 ; 0000-0002-8246-2510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Malviya, Ashwani Kumar</creatorcontrib><creatorcontrib>Zarehparast Malekzadeh, Mehdi</creatorcontrib><creatorcontrib>Santarremigia, Francisco Enrique</creatorcontrib><creatorcontrib>Molero, Gemma Dolores</creatorcontrib><creatorcontrib>Villalba Sanchis, Ignacio</creatorcontrib><creatorcontrib>Fernández, Pablo Martínez</creatorcontrib><creatorcontrib>Yepes, Víctor</creatorcontrib><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><title>Sustainability</title><description>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</description><subject>Algorithms</subject><subject>Anniversaries</subject><subject>Artificial intelligence</subject><subject>Business performance management</subject><subject>Costs</subject><subject>Design optimization</subject><subject>Economic aspects</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Environmental impact</subject><subject>Genetic algorithms</subject><subject>Linear programming</subject><subject>Literature reviews</subject><subject>Lithium</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization techniques</subject><subject>Pareto efficiency</subject><subject>Power</subject><subject>R&D</subject><subject>Raw materials</subject><subject>Refuse and refuse disposal</subject><subject>Research & development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9rGzEMx4-xwUrbl_0Fhr60g2vlc3x3fuxCfwTSXVnal74cis8ODnd2Zvu6pf_F_uM5pLBFAkmIz1cSKMu-ULhkTMBVGGlJeTkp-IfsqICK5hQ4fPyv_pydhrCGZIxRQcuj7E-ziWYwbxiNs8RpMjdakelW9im6EAnajtzYV-OdHZSN2JPZsEEZye1o5U4Udqrv5sWSbxij8kYFstyS52DsijyMfTR5s1yrxL4q8og-mt3sxS_0AzlYfv7QPC6ai5Psk8Y-qNP3fJw93948Te_zeXM3m17Pc1nwKuYFYxWwohTYlVprKJkWtajKmqJWkwoZBdXJSQW8lLUEUXeAFCuhllLRWnN2nJ3t5268-zmqENu1G71NK1sGAgSvAYpEXe6pFfaqNVa76FEm79RgpLNKm9S_rmHCKU-HJcHFgSAxUf2OKxxDaGeLH4fs1z0rvQvBK91uvBnQb1sK7e6l7b-Xsr8fE5Ku</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Malviya, Ashwani Kumar</creator><creator>Zarehparast Malekzadeh, Mehdi</creator><creator>Santarremigia, Francisco Enrique</creator><creator>Molero, Gemma Dolores</creator><creator>Villalba Sanchis, Ignacio</creator><creator>Fernández, Pablo Martínez</creator><creator>Yepes, Víctor</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0009-7652-1439</orcidid><orcidid>https://orcid.org/0000-0003-1435-4005</orcidid><orcidid>https://orcid.org/0000-0002-4091-8719</orcidid><orcidid>https://orcid.org/0000-0001-7296-2282</orcidid><orcidid>https://orcid.org/0000-0001-5466-9269</orcidid><orcidid>https://orcid.org/0000-0001-5488-6001</orcidid><orcidid>https://orcid.org/0000-0002-8246-2510</orcidid></search><sort><creationdate>20240801</creationdate><title>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</title><author>Malviya, Ashwani Kumar ; Zarehparast Malekzadeh, Mehdi ; Santarremigia, Francisco Enrique ; Molero, Gemma Dolores ; Villalba Sanchis, Ignacio ; Fernández, Pablo Martínez ; Yepes, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-233703269ad6fff063f9897681afe47a310edc47056c8c098d0a1a79ebce18f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anniversaries</topic><topic>Artificial intelligence</topic><topic>Business performance management</topic><topic>Costs</topic><topic>Design optimization</topic><topic>Economic aspects</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Environmental impact</topic><topic>Genetic algorithms</topic><topic>Linear programming</topic><topic>Literature reviews</topic><topic>Lithium</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization techniques</topic><topic>Pareto efficiency</topic><topic>Power</topic><topic>R&D</topic><topic>Raw materials</topic><topic>Refuse and refuse disposal</topic><topic>Research & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malviya, Ashwani Kumar</creatorcontrib><creatorcontrib>Zarehparast Malekzadeh, Mehdi</creatorcontrib><creatorcontrib>Santarremigia, Francisco Enrique</creatorcontrib><creatorcontrib>Molero, Gemma Dolores</creatorcontrib><creatorcontrib>Villalba Sanchis, Ignacio</creatorcontrib><creatorcontrib>Fernández, Pablo Martínez</creatorcontrib><creatorcontrib>Yepes, Víctor</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malviya, Ashwani Kumar</au><au>Zarehparast Malekzadeh, Mehdi</au><au>Santarremigia, Francisco Enrique</au><au>Molero, Gemma Dolores</au><au>Villalba Sanchis, Ignacio</au><au>Fernández, Pablo Martínez</au><au>Yepes, Víctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO)</atitle><jtitle>Sustainability</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>6425</spage><pages>6425-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition phase and the end-of-life phase of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data available from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16156425</doi><orcidid>https://orcid.org/0009-0009-7652-1439</orcidid><orcidid>https://orcid.org/0000-0003-1435-4005</orcidid><orcidid>https://orcid.org/0000-0002-4091-8719</orcidid><orcidid>https://orcid.org/0000-0001-7296-2282</orcidid><orcidid>https://orcid.org/0000-0001-5466-9269</orcidid><orcidid>https://orcid.org/0000-0001-5488-6001</orcidid><orcidid>https://orcid.org/0000-0002-8246-2510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-08, Vol.16 (15), p.6425 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3090958002 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Anniversaries Artificial intelligence Business performance management Costs Design optimization Economic aspects Energy consumption Energy storage Environmental impact Genetic algorithms Linear programming Literature reviews Lithium Mathematical optimization Methods Optimization techniques Pareto efficiency Power R&D Raw materials Refuse and refuse disposal Research & development |
title | Optimization of Life Cycle Cost and Environmental Impact Functions of NiZn Batteries by Using Multi-Objective Particle Swarm Optimization (MOPSO) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Life%20Cycle%20Cost%20and%20Environmental%20Impact%20Functions%20of%20NiZn%20Batteries%20by%20Using%20Multi-Objective%20Particle%20Swarm%20Optimization%20(MOPSO)&rft.jtitle=Sustainability&rft.au=Malviya,%20Ashwani%20Kumar&rft.date=2024-08-01&rft.volume=16&rft.issue=15&rft.spage=6425&rft.pages=6425-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16156425&rft_dat=%3Cgale_proqu%3EA804515257%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090958002&rft_id=info:pmid/&rft_galeid=A804515257&rfr_iscdi=true |