Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft

This study explores the best vibration reduction using an individual blade control (IBC) actuation scheme for a lift-offset coaxial helicopter in high-speed flight. The rotorcraft dynamics analysis model consists of coaxial, three-bladed counter-rotating rotors and a finite element fuselage stick mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2024-07, Vol.61 (4), p.1262-1271
Hauptverfasser: Hong, Seong Hyun, Kim, Dong Kyun, Jung, Sung Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1271
container_issue 4
container_start_page 1262
container_title Journal of aircraft
container_volume 61
creator Hong, Seong Hyun
Kim, Dong Kyun
Jung, Sung Nam
description This study explores the best vibration reduction using an individual blade control (IBC) actuation scheme for a lift-offset coaxial helicopter in high-speed flight. The rotorcraft dynamics analysis model consists of coaxial, three-bladed counter-rotating rotors and a finite element fuselage stick model constructed based on the measured data of the XH-59A helicopter. The XH-59A helicopter is well-known for its severe vibration level encountered during the flight (over 0.5g), leading to the cancellation of the development program. A special focus is given to assessing the accuracy and efficiency of the integrated rotor–body vibration predictions evaluated between the one-way and two-way coupling methods in reference to the flight data of the vehicle. The two-way rotor–body coupled results show excellent correlations with the test data for rotor blade loads and airframe vibrations. The best actuation scenarios are then sought for the minimum vibration at the rotor hub and the pilot seat. The IBC pitch actuation effectively reduces the vibrations at both locations of the rotorcraft. Specifically, a multiple-harmonic IBC actuation enables to suppress the pilot seat vibration by 93% compared to the uncontrolled case, achieving a significantly reduced vibration level (below 0.05g).
doi_str_mv 10.2514/1.C037715
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090956817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090956817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a178t-836d63a9032f88ec1fde075ef761c4bf2deeb2bea42bff650f422e7a342c55b13</originalsourceid><addsrcrecordid>eNplkMtKw0AUhgdRsFYXvsGAILhInUvmkmUNXgqFgrdtmCRzcErM1JlJ0bc3pQUXrs4P5-M7hx-hS0pmTND8ls5KwpWi4ghNqOA841rqYzQhhNFMS1mcorMY14QQTZSaIFj0rdu6djAdvutMa3Hp-xR8h-ebTfCm-cDgA543yW0tfnd1MMn5Hr8M49rGuMsesMFLBylbAUSbRoX5dqPw2ScfmmAgnaMTMF20F4c5RW8P96_lU7ZcPS7K-TIzVOmUaS5byU1BOAOtbUOhtUQJC0rSJq-BtdbWrLYmZzWAFARyxqwyPGeNEDXlU3S1946_fw02pmrth9CPJytOClIIqakaqZs91QQfY7BQbYL7NOGnoqTa1VjR6lDjyF7vWeOM-bP9B38B2LVw9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090956817</pqid></control><display><type>article</type><title>Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft</title><source>Alma/SFX Local Collection</source><creator>Hong, Seong Hyun ; Kim, Dong Kyun ; Jung, Sung Nam</creator><creatorcontrib>Hong, Seong Hyun ; Kim, Dong Kyun ; Jung, Sung Nam</creatorcontrib><description>This study explores the best vibration reduction using an individual blade control (IBC) actuation scheme for a lift-offset coaxial helicopter in high-speed flight. The rotorcraft dynamics analysis model consists of coaxial, three-bladed counter-rotating rotors and a finite element fuselage stick model constructed based on the measured data of the XH-59A helicopter. The XH-59A helicopter is well-known for its severe vibration level encountered during the flight (over 0.5g), leading to the cancellation of the development program. A special focus is given to assessing the accuracy and efficiency of the integrated rotor–body vibration predictions evaluated between the one-way and two-way coupling methods in reference to the flight data of the vehicle. The two-way rotor–body coupled results show excellent correlations with the test data for rotor blade loads and airframe vibrations. The best actuation scenarios are then sought for the minimum vibration at the rotor hub and the pilot seat. The IBC pitch actuation effectively reduces the vibrations at both locations of the rotorcraft. Specifically, a multiple-harmonic IBC actuation enables to suppress the pilot seat vibration by 93% compared to the uncontrolled case, achieving a significantly reduced vibration level (below 0.05g).</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C037715</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Actuation ; Airframes ; Flight ; Helicopter control ; Individual blade control ; Rotary wing aircraft ; Rotating bodies ; Vibration ; Vibration analysis ; Vibration control ; Vibration measurement</subject><ispartof>Journal of aircraft, 2024-07, Vol.61 (4), p.1262-1271</ispartof><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a178t-836d63a9032f88ec1fde075ef761c4bf2deeb2bea42bff650f422e7a342c55b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hong, Seong Hyun</creatorcontrib><creatorcontrib>Kim, Dong Kyun</creatorcontrib><creatorcontrib>Jung, Sung Nam</creatorcontrib><title>Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft</title><title>Journal of aircraft</title><description>This study explores the best vibration reduction using an individual blade control (IBC) actuation scheme for a lift-offset coaxial helicopter in high-speed flight. The rotorcraft dynamics analysis model consists of coaxial, three-bladed counter-rotating rotors and a finite element fuselage stick model constructed based on the measured data of the XH-59A helicopter. The XH-59A helicopter is well-known for its severe vibration level encountered during the flight (over 0.5g), leading to the cancellation of the development program. A special focus is given to assessing the accuracy and efficiency of the integrated rotor–body vibration predictions evaluated between the one-way and two-way coupling methods in reference to the flight data of the vehicle. The two-way rotor–body coupled results show excellent correlations with the test data for rotor blade loads and airframe vibrations. The best actuation scenarios are then sought for the minimum vibration at the rotor hub and the pilot seat. The IBC pitch actuation effectively reduces the vibrations at both locations of the rotorcraft. Specifically, a multiple-harmonic IBC actuation enables to suppress the pilot seat vibration by 93% compared to the uncontrolled case, achieving a significantly reduced vibration level (below 0.05g).</description><subject>Active control</subject><subject>Actuation</subject><subject>Airframes</subject><subject>Flight</subject><subject>Helicopter control</subject><subject>Individual blade control</subject><subject>Rotary wing aircraft</subject><subject>Rotating bodies</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><subject>Vibration measurement</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkMtKw0AUhgdRsFYXvsGAILhInUvmkmUNXgqFgrdtmCRzcErM1JlJ0bc3pQUXrs4P5-M7hx-hS0pmTND8ls5KwpWi4ghNqOA841rqYzQhhNFMS1mcorMY14QQTZSaIFj0rdu6djAdvutMa3Hp-xR8h-ebTfCm-cDgA543yW0tfnd1MMn5Hr8M49rGuMsesMFLBylbAUSbRoX5dqPw2ScfmmAgnaMTMF20F4c5RW8P96_lU7ZcPS7K-TIzVOmUaS5byU1BOAOtbUOhtUQJC0rSJq-BtdbWrLYmZzWAFARyxqwyPGeNEDXlU3S1946_fw02pmrth9CPJytOClIIqakaqZs91QQfY7BQbYL7NOGnoqTa1VjR6lDjyF7vWeOM-bP9B38B2LVw9Q</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Hong, Seong Hyun</creator><creator>Kim, Dong Kyun</creator><creator>Jung, Sung Nam</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>202407</creationdate><title>Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft</title><author>Hong, Seong Hyun ; Kim, Dong Kyun ; Jung, Sung Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a178t-836d63a9032f88ec1fde075ef761c4bf2deeb2bea42bff650f422e7a342c55b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Actuation</topic><topic>Airframes</topic><topic>Flight</topic><topic>Helicopter control</topic><topic>Individual blade control</topic><topic>Rotary wing aircraft</topic><topic>Rotating bodies</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><topic>Vibration measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Seong Hyun</creatorcontrib><creatorcontrib>Kim, Dong Kyun</creatorcontrib><creatorcontrib>Jung, Sung Nam</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Seong Hyun</au><au>Kim, Dong Kyun</au><au>Jung, Sung Nam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft</atitle><jtitle>Journal of aircraft</jtitle><date>2024-07</date><risdate>2024</risdate><volume>61</volume><issue>4</issue><spage>1262</spage><epage>1271</epage><pages>1262-1271</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>This study explores the best vibration reduction using an individual blade control (IBC) actuation scheme for a lift-offset coaxial helicopter in high-speed flight. The rotorcraft dynamics analysis model consists of coaxial, three-bladed counter-rotating rotors and a finite element fuselage stick model constructed based on the measured data of the XH-59A helicopter. The XH-59A helicopter is well-known for its severe vibration level encountered during the flight (over 0.5g), leading to the cancellation of the development program. A special focus is given to assessing the accuracy and efficiency of the integrated rotor–body vibration predictions evaluated between the one-way and two-way coupling methods in reference to the flight data of the vehicle. The two-way rotor–body coupled results show excellent correlations with the test data for rotor blade loads and airframe vibrations. The best actuation scenarios are then sought for the minimum vibration at the rotor hub and the pilot seat. The IBC pitch actuation effectively reduces the vibrations at both locations of the rotorcraft. Specifically, a multiple-harmonic IBC actuation enables to suppress the pilot seat vibration by 93% compared to the uncontrolled case, achieving a significantly reduced vibration level (below 0.05g).</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C037715</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2024-07, Vol.61 (4), p.1262-1271
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_journals_3090956817
source Alma/SFX Local Collection
subjects Active control
Actuation
Airframes
Flight
Helicopter control
Individual blade control
Rotary wing aircraft
Rotating bodies
Vibration
Vibration analysis
Vibration control
Vibration measurement
title Individual Blade Control Approach for Active Vibration Suppression of a Lift-Offset Coaxial Rotorcraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20Blade%20Control%20Approach%20for%20Active%20Vibration%20Suppression%20of%20a%20Lift-Offset%20Coaxial%20Rotorcraft&rft.jtitle=Journal%20of%20aircraft&rft.au=Hong,%20Seong%20Hyun&rft.date=2024-07&rft.volume=61&rft.issue=4&rft.spage=1262&rft.epage=1271&rft.pages=1262-1271&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C037715&rft_dat=%3Cproquest_cross%3E3090956817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090956817&rft_id=info:pmid/&rfr_iscdi=true