Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding

Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2024-08, Vol.39 (15), p.2188-2197
Hauptverfasser: Al-Duhni, Ghaleb Saleh Ghaleb, Jaiswal, Veeru, Khasgiwala, Mudit, Volakis, John L., Pulugurtha, Markondeya Raj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2197
container_issue 15
container_start_page 2188
container_title Journal of materials research
container_volume 39
creator Al-Duhni, Ghaleb Saleh Ghaleb
Jaiswal, Veeru
Khasgiwala, Mudit
Volakis, John L.
Pulugurtha, Markondeya Raj
description Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems. Graphical abstract
doi_str_mv 10.1557/s43578-024-01377-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090926995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090926995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsv4CrgOprrZLKUYlUourHrkJkkNXUuNZlBuvMdfEOfxOgI7lwdOJxz_p8PgHOCL4kQ8ipxJmSJMOUIEyYlkgdgRjHnSDBaHIIZLkuOqCL8GJyktMWYCCz5DKwX4-f7x6J_CEsH27EZQmP2LjoL02DqF-j7CJv-DUHTWRi6wcXW2WAGh3x0r6Pr6j1szaZzQ6hheg6usaHbnIIjb5rkzn51DtbLm6fFHVo93t4vrleophIPyDFTVqJylBuvnFW-9ERWZYlphXkhFBMW42wWWQkXtRGcSC9sSUxtDbFsDi6m3V3s8zNp0Nt-jF0-qRlWWNFCKZFTdErVsU8pOq93MbQm7jXB-hufnvDpjE__4NMyl9hUSjncbVz8m_6n9QVfRXR2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090926995</pqid></control><display><type>article</type><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><source>SpringerLink Journals</source><creator>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</creator><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</creatorcontrib><description>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-024-01377-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Copper ; Electromagnetic interference ; Electromagnetic shielding ; Electronic systems ; Electroplating ; Ferrous alloys ; Inorganic Chemistry ; Magnetic shielding ; Materials Engineering ; Materials Science ; Monolayers ; Nanotechnology ; Stacks ; Substrates ; Thickness</subject><ispartof>Journal of materials research, 2024-08, Vol.39 (15), p.2188-2197</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</cites><orcidid>0000-0002-9047-6904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-024-01377-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-024-01377-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb</creatorcontrib><creatorcontrib>Jaiswal, Veeru</creatorcontrib><creatorcontrib>Khasgiwala, Mudit</creatorcontrib><creatorcontrib>Volakis, John L.</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic shielding</subject><subject>Electronic systems</subject><subject>Electroplating</subject><subject>Ferrous alloys</subject><subject>Inorganic Chemistry</subject><subject>Magnetic shielding</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Stacks</subject><subject>Substrates</subject><subject>Thickness</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKsv4CrgOprrZLKUYlUourHrkJkkNXUuNZlBuvMdfEOfxOgI7lwdOJxz_p8PgHOCL4kQ8ipxJmSJMOUIEyYlkgdgRjHnSDBaHIIZLkuOqCL8GJyktMWYCCz5DKwX4-f7x6J_CEsH27EZQmP2LjoL02DqF-j7CJv-DUHTWRi6wcXW2WAGh3x0r6Pr6j1szaZzQ6hheg6usaHbnIIjb5rkzn51DtbLm6fFHVo93t4vrleophIPyDFTVqJylBuvnFW-9ERWZYlphXkhFBMW42wWWQkXtRGcSC9sSUxtDbFsDi6m3V3s8zNp0Nt-jF0-qRlWWNFCKZFTdErVsU8pOq93MbQm7jXB-hufnvDpjE__4NMyl9hUSjncbVz8m_6n9QVfRXR2</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Al-Duhni, Ghaleb Saleh Ghaleb</creator><creator>Jaiswal, Veeru</creator><creator>Khasgiwala, Mudit</creator><creator>Volakis, John L.</creator><creator>Pulugurtha, Markondeya Raj</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9047-6904</orcidid></search><sort><creationdate>20240814</creationdate><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><author>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic shielding</topic><topic>Electronic systems</topic><topic>Electroplating</topic><topic>Ferrous alloys</topic><topic>Inorganic Chemistry</topic><topic>Magnetic shielding</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Stacks</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb</creatorcontrib><creatorcontrib>Jaiswal, Veeru</creatorcontrib><creatorcontrib>Khasgiwala, Mudit</creatorcontrib><creatorcontrib>Volakis, John L.</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Duhni, Ghaleb Saleh Ghaleb</au><au>Jaiswal, Veeru</au><au>Khasgiwala, Mudit</au><au>Volakis, John L.</au><au>Pulugurtha, Markondeya Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2024-08-14</date><risdate>2024</risdate><volume>39</volume><issue>15</issue><spage>2188</spage><epage>2197</epage><pages>2188-2197</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-024-01377-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9047-6904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2024-08, Vol.39 (15), p.2188-2197
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_3090926995
source SpringerLink Journals
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Copper
Electromagnetic interference
Electromagnetic shielding
Electronic systems
Electroplating
Ferrous alloys
Inorganic Chemistry
Magnetic shielding
Materials Engineering
Materials Science
Monolayers
Nanotechnology
Stacks
Substrates
Thickness
title Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%E2%80%93CoNiFe%20multilayered%20stack%20for%20low-%20and%20intermediate-frequency%20magnetic%20shielding&rft.jtitle=Journal%20of%20materials%20research&rft.au=Al-Duhni,%20Ghaleb%20Saleh%20Ghaleb&rft.date=2024-08-14&rft.volume=39&rft.issue=15&rft.spage=2188&rft.epage=2197&rft.pages=2188-2197&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-024-01377-7&rft_dat=%3Cproquest_cross%3E3090926995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090926995&rft_id=info:pmid/&rfr_iscdi=true