Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding
Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such mult...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2024-08, Vol.39 (15), p.2188-2197 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2197 |
---|---|
container_issue | 15 |
container_start_page | 2188 |
container_title | Journal of materials research |
container_volume | 39 |
creator | Al-Duhni, Ghaleb Saleh Ghaleb Jaiswal, Veeru Khasgiwala, Mudit Volakis, John L. Pulugurtha, Markondeya Raj |
description | Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems.
Graphical abstract |
doi_str_mv | 10.1557/s43578-024-01377-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090926995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090926995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsv4CrgOprrZLKUYlUourHrkJkkNXUuNZlBuvMdfEOfxOgI7lwdOJxz_p8PgHOCL4kQ8ipxJmSJMOUIEyYlkgdgRjHnSDBaHIIZLkuOqCL8GJyktMWYCCz5DKwX4-f7x6J_CEsH27EZQmP2LjoL02DqF-j7CJv-DUHTWRi6wcXW2WAGh3x0r6Pr6j1szaZzQ6hheg6usaHbnIIjb5rkzn51DtbLm6fFHVo93t4vrleophIPyDFTVqJylBuvnFW-9ERWZYlphXkhFBMW42wWWQkXtRGcSC9sSUxtDbFsDi6m3V3s8zNp0Nt-jF0-qRlWWNFCKZFTdErVsU8pOq93MbQm7jXB-hufnvDpjE__4NMyl9hUSjncbVz8m_6n9QVfRXR2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090926995</pqid></control><display><type>article</type><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><source>SpringerLink Journals</source><creator>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</creator><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</creatorcontrib><description>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-024-01377-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Copper ; Electromagnetic interference ; Electromagnetic shielding ; Electronic systems ; Electroplating ; Ferrous alloys ; Inorganic Chemistry ; Magnetic shielding ; Materials Engineering ; Materials Science ; Monolayers ; Nanotechnology ; Stacks ; Substrates ; Thickness</subject><ispartof>Journal of materials research, 2024-08, Vol.39 (15), p.2188-2197</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</cites><orcidid>0000-0002-9047-6904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-024-01377-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-024-01377-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb</creatorcontrib><creatorcontrib>Jaiswal, Veeru</creatorcontrib><creatorcontrib>Khasgiwala, Mudit</creatorcontrib><creatorcontrib>Volakis, John L.</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic shielding</subject><subject>Electronic systems</subject><subject>Electroplating</subject><subject>Ferrous alloys</subject><subject>Inorganic Chemistry</subject><subject>Magnetic shielding</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Stacks</subject><subject>Substrates</subject><subject>Thickness</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKsv4CrgOprrZLKUYlUourHrkJkkNXUuNZlBuvMdfEOfxOgI7lwdOJxz_p8PgHOCL4kQ8ipxJmSJMOUIEyYlkgdgRjHnSDBaHIIZLkuOqCL8GJyktMWYCCz5DKwX4-f7x6J_CEsH27EZQmP2LjoL02DqF-j7CJv-DUHTWRi6wcXW2WAGh3x0r6Pr6j1szaZzQ6hheg6usaHbnIIjb5rkzn51DtbLm6fFHVo93t4vrleophIPyDFTVqJylBuvnFW-9ERWZYlphXkhFBMW42wWWQkXtRGcSC9sSUxtDbFsDi6m3V3s8zNp0Nt-jF0-qRlWWNFCKZFTdErVsU8pOq93MbQm7jXB-hufnvDpjE__4NMyl9hUSjncbVz8m_6n9QVfRXR2</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Al-Duhni, Ghaleb Saleh Ghaleb</creator><creator>Jaiswal, Veeru</creator><creator>Khasgiwala, Mudit</creator><creator>Volakis, John L.</creator><creator>Pulugurtha, Markondeya Raj</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9047-6904</orcidid></search><sort><creationdate>20240814</creationdate><title>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</title><author>Al-Duhni, Ghaleb Saleh Ghaleb ; Jaiswal, Veeru ; Khasgiwala, Mudit ; Volakis, John L. ; Pulugurtha, Markondeya Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e3a8b5be24af9ed9f8f17b8802b0465935d00f8f65d0145ca5417f5d81acda1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic shielding</topic><topic>Electronic systems</topic><topic>Electroplating</topic><topic>Ferrous alloys</topic><topic>Inorganic Chemistry</topic><topic>Magnetic shielding</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Stacks</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Duhni, Ghaleb Saleh Ghaleb</creatorcontrib><creatorcontrib>Jaiswal, Veeru</creatorcontrib><creatorcontrib>Khasgiwala, Mudit</creatorcontrib><creatorcontrib>Volakis, John L.</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Duhni, Ghaleb Saleh Ghaleb</au><au>Jaiswal, Veeru</au><au>Khasgiwala, Mudit</au><au>Volakis, John L.</au><au>Pulugurtha, Markondeya Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2024-08-14</date><risdate>2024</risdate><volume>39</volume><issue>15</issue><spage>2188</spage><epage>2197</epage><pages>2188-2197</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Electromagnetic interference (EMI) shielding has been a fundamental challenge because of the low wave impedances with monolithic metallic shields at low frequencies. Multilayered structures are considered an alternative to traditional monolithic shielding materials. This paper investigates such multilayered conductors of cobalt–nickel–iron alloy (CoNiFe) and copper (Cu) to illustrate their superiority over conventional monolithic shields. Modeling, simulations, and measurements demonstrate improved shielding when multilayered stacks are used against magnetic field sources. Furthermore, the stack-ups have excellent shielding even with a thickness of 5 µm. At least 40 dB of additional shielding effectiveness is achieved across 30–1000 MHz as compared to single-layer shielding from monolithic Cu of the same thickness. These innovative stack-ups also exhibit superior shielding when compared to multilayered stacks and shielding materials in literature. Additionally, these stack-ups are fabricated using standard substrate processes such as electroplating. Consequently, this approach becomes commercially viable and applicable to future electronic systems.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-024-01377-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9047-6904</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2024-08, Vol.39 (15), p.2188-2197 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_3090926995 |
source | SpringerLink Journals |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Copper Electromagnetic interference Electromagnetic shielding Electronic systems Electroplating Ferrous alloys Inorganic Chemistry Magnetic shielding Materials Engineering Materials Science Monolayers Nanotechnology Stacks Substrates Thickness |
title | Cu–CoNiFe multilayered stack for low- and intermediate-frequency magnetic shielding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%E2%80%93CoNiFe%20multilayered%20stack%20for%20low-%20and%20intermediate-frequency%20magnetic%20shielding&rft.jtitle=Journal%20of%20materials%20research&rft.au=Al-Duhni,%20Ghaleb%20Saleh%20Ghaleb&rft.date=2024-08-14&rft.volume=39&rft.issue=15&rft.spage=2188&rft.epage=2197&rft.pages=2188-2197&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-024-01377-7&rft_dat=%3Cproquest_cross%3E3090926995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090926995&rft_id=info:pmid/&rfr_iscdi=true |