Start-Up and Bacterial Enrichment of an Anammox Reactor with Polyurethane Porous Material: Performance and Microbial Community

To expedite enrichment of anaerobic ammonia-oxidizing bacteria (AnAOB) as a way to reduce the start-up time, leading to a quicker transition into stable operation, the anaerobic ammonia oxidation (anammox) process was initiated by a biofilm reactor with polyurethane porous material. The enrichment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-08, Vol.16 (15), p.2116
Hauptverfasser: Yan, Zichun, Zhang, Weibin, Pei, Zhibin, Jiao, Longzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To expedite enrichment of anaerobic ammonia-oxidizing bacteria (AnAOB) as a way to reduce the start-up time, leading to a quicker transition into stable operation, the anaerobic ammonia oxidation (anammox) process was initiated by a biofilm reactor with polyurethane porous material. The enrichment of anammox bacteria was studied by progressively increasing the influent substrate concentration while simultaneously decreasing hydraulic retention time. Following a 73 d start-up and subsequent 103 d enrichment phase, the removal rates of ammonia and nitrite reached 97.87% and 99.96%, respectively, and the community was characterized by the development of brick-red anammox biofilms and granules. The predominant bacterial phyla within the reactor were Planctomycetota, Chloroflexi, and Proteobacteria, with relative abundances of 25.25%, 29.41%, and 14.3%, respectively, and the dominant genus was Candidatus brocadia, comprising 20.44% of the microbial community. These findings indicate that the polyurethane porous material biofilm reactor is conducive to the enrichment of AnAOB. After enrichment, the anaerobic microbial community exhibited significant richness and diversity, with anammox bacteria as the primary group.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16152116