sqlFuzz: Directed Fuzzing for SQL Injection Vulnerability

Fuzz testing technology is an important approach to detecting SQL injection vulnerabilities. Among them, coverage-guided gray-box fuzz testing technology is the current research focus, and has been proved to be an effective method. However, for SQL injection vulnerability, coverage-guided gray-box f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-08, Vol.13 (15), p.2946
Hauptverfasser: Yuan, Ye, Lu, Yuliang, Zhu, Kailong, Huang, Hui, Chen, Yuanchao, Zhang, Yifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fuzz testing technology is an important approach to detecting SQL injection vulnerabilities. Among them, coverage-guided gray-box fuzz testing technology is the current research focus, and has been proved to be an effective method. However, for SQL injection vulnerability, coverage-guided gray-box fuzz testing as a detection method has the problems of low efficiency and high false positives. In order to solve the above problems, we propose a potentially vulnerable code-guided gray-box fuzz testing technology. Firstly, taint analysis technology is used to locate all the taint propagation paths containing potential vulnerabilities as potentially vulnerable codes. Then, the source code of the application program is instrumented according to the location of the potentially vulnerable code. Finally, the feedback of seeds during the run is used to guide seed selection and seed mutation, and a large number of test cases are generated. Based on the above techniques, we implement the sqlFuzz prototype system, and use this system to analyze eight modern PHP applications. The experimental results show that sqlFuzz can not only detect more SQL injection vulnerabilities than the existing coverage-guided gray box fuzz testing technology, but also significantly improve the efficiency, in terms of time efficiency increased by 80 percent.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13152946