Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive
Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for appli...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-08, Vol.13 (15), p.3020 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3020 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Lu, Yeqin Yu, Yannan Huang, Changbin Yan, Jichi Wu, Haoyuan |
description | Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz. |
doi_str_mv | 10.3390/electronics13153020 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090896617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804512306</galeid><sourcerecordid>A804512306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</originalsourceid><addsrcrecordid>eNptUEtPAjEQ3hhNJMov8NLE8-K0s4_2iPhMIBxArpvSnYUS2GK3aPDXW4MHD84c5svkeyRfktxwGCAquKMtmeBda03HkecIAs6SnoBSpUoocf4HXyb9rttAHMVRIvSSxXQf7M5-6WBdyyYU1q5mrmEzO2KT6ezpcc5mnzaYtW1XbO71JmY5f2T3uqNIbNlCe6uXW2Kjg_fUBvbg7QddJxeN3nbU_71XyVu0Gr2k4-nz62g4Tg1yHlKeL7XIKWKjcpmBqA2XS45Y1kCUCzJZg3WTZ7VRUqEAKjkWsoAsk7kEiVfJ7cl37937gbpQbdzBtzGyQlAgVVHwMrIGJ9ZKb6mybeOC1yZuTTtrXEuNjf-hhCznAqGIAjwJjHdd56mp9t7utD9WHKqf0qt_Ssdvj5t1og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090896617</pqid></control><display><type>article</type><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</creator><creatorcontrib>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</creatorcontrib><description>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13153020</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifiers (Electronics) ; Analog circuits ; Battery chargers ; Circuits ; Damage tolerance ; Electric potential ; Electric vehicle charging ; Electromagnetic interference ; Electromagnetism ; Frequency ranges ; Integrated circuits ; Metal oxide semiconductor field effect transistors ; Methods ; Mobile devices ; MOSFETs ; Oscillations ; Semiconductor chips ; Silicon carbide ; Switching ; Trajectory optimization ; Transistors ; Voltage ; Waveforms</subject><ispartof>Electronics (Basel), 2024-08, Vol.13 (15), p.3020</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Yeqin</creatorcontrib><creatorcontrib>Yu, Yannan</creatorcontrib><creatorcontrib>Huang, Changbin</creatorcontrib><creatorcontrib>Yan, Jichi</creatorcontrib><creatorcontrib>Wu, Haoyuan</creatorcontrib><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><title>Electronics (Basel)</title><description>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</description><subject>Amplifiers (Electronics)</subject><subject>Analog circuits</subject><subject>Battery chargers</subject><subject>Circuits</subject><subject>Damage tolerance</subject><subject>Electric potential</subject><subject>Electric vehicle charging</subject><subject>Electromagnetic interference</subject><subject>Electromagnetism</subject><subject>Frequency ranges</subject><subject>Integrated circuits</subject><subject>Metal oxide semiconductor field effect transistors</subject><subject>Methods</subject><subject>Mobile devices</subject><subject>MOSFETs</subject><subject>Oscillations</subject><subject>Semiconductor chips</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Trajectory optimization</subject><subject>Transistors</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUEtPAjEQ3hhNJMov8NLE8-K0s4_2iPhMIBxArpvSnYUS2GK3aPDXW4MHD84c5svkeyRfktxwGCAquKMtmeBda03HkecIAs6SnoBSpUoocf4HXyb9rttAHMVRIvSSxXQf7M5-6WBdyyYU1q5mrmEzO2KT6ezpcc5mnzaYtW1XbO71JmY5f2T3uqNIbNlCe6uXW2Kjg_fUBvbg7QddJxeN3nbU_71XyVu0Gr2k4-nz62g4Tg1yHlKeL7XIKWKjcpmBqA2XS45Y1kCUCzJZg3WTZ7VRUqEAKjkWsoAsk7kEiVfJ7cl37937gbpQbdzBtzGyQlAgVVHwMrIGJ9ZKb6mybeOC1yZuTTtrXEuNjf-hhCznAqGIAjwJjHdd56mp9t7utD9WHKqf0qt_Ssdvj5t1og</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lu, Yeqin</creator><creator>Yu, Yannan</creator><creator>Huang, Changbin</creator><creator>Yan, Jichi</creator><creator>Wu, Haoyuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><author>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifiers (Electronics)</topic><topic>Analog circuits</topic><topic>Battery chargers</topic><topic>Circuits</topic><topic>Damage tolerance</topic><topic>Electric potential</topic><topic>Electric vehicle charging</topic><topic>Electromagnetic interference</topic><topic>Electromagnetism</topic><topic>Frequency ranges</topic><topic>Integrated circuits</topic><topic>Metal oxide semiconductor field effect transistors</topic><topic>Methods</topic><topic>Mobile devices</topic><topic>MOSFETs</topic><topic>Oscillations</topic><topic>Semiconductor chips</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Trajectory optimization</topic><topic>Transistors</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yeqin</creatorcontrib><creatorcontrib>Yu, Yannan</creatorcontrib><creatorcontrib>Huang, Changbin</creatorcontrib><creatorcontrib>Yan, Jichi</creatorcontrib><creatorcontrib>Wu, Haoyuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yeqin</au><au>Yu, Yannan</au><au>Huang, Changbin</au><au>Yan, Jichi</au><au>Wu, Haoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>3020</spage><pages>3020-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13153020</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-08, Vol.13 (15), p.3020 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3090896617 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amplifiers (Electronics) Analog circuits Battery chargers Circuits Damage tolerance Electric potential Electric vehicle charging Electromagnetic interference Electromagnetism Frequency ranges Integrated circuits Metal oxide semiconductor field effect transistors Methods Mobile devices MOSFETs Oscillations Semiconductor chips Silicon carbide Switching Trajectory optimization Transistors Voltage Waveforms |
title | Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Method%20of%20SiC%20MOSFET%20Switching%20Trajectory%20Based%20on%20Variable%20Current%20Drive&rft.jtitle=Electronics%20(Basel)&rft.au=Lu,%20Yeqin&rft.date=2024-08-01&rft.volume=13&rft.issue=15&rft.spage=3020&rft.pages=3020-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13153020&rft_dat=%3Cgale_proqu%3EA804512306%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090896617&rft_id=info:pmid/&rft_galeid=A804512306&rfr_iscdi=true |