Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive

Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-08, Vol.13 (15), p.3020
Hauptverfasser: Lu, Yeqin, Yu, Yannan, Huang, Changbin, Yan, Jichi, Wu, Haoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3020
container_title Electronics (Basel)
container_volume 13
creator Lu, Yeqin
Yu, Yannan
Huang, Changbin
Yan, Jichi
Wu, Haoyuan
description Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.
doi_str_mv 10.3390/electronics13153020
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090896617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804512306</galeid><sourcerecordid>A804512306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</originalsourceid><addsrcrecordid>eNptUEtPAjEQ3hhNJMov8NLE8-K0s4_2iPhMIBxArpvSnYUS2GK3aPDXW4MHD84c5svkeyRfktxwGCAquKMtmeBda03HkecIAs6SnoBSpUoocf4HXyb9rttAHMVRIvSSxXQf7M5-6WBdyyYU1q5mrmEzO2KT6ezpcc5mnzaYtW1XbO71JmY5f2T3uqNIbNlCe6uXW2Kjg_fUBvbg7QddJxeN3nbU_71XyVu0Gr2k4-nz62g4Tg1yHlKeL7XIKWKjcpmBqA2XS45Y1kCUCzJZg3WTZ7VRUqEAKjkWsoAsk7kEiVfJ7cl37937gbpQbdzBtzGyQlAgVVHwMrIGJ9ZKb6mybeOC1yZuTTtrXEuNjf-hhCznAqGIAjwJjHdd56mp9t7utD9WHKqf0qt_Ssdvj5t1og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090896617</pqid></control><display><type>article</type><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</creator><creatorcontrib>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</creatorcontrib><description>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13153020</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifiers (Electronics) ; Analog circuits ; Battery chargers ; Circuits ; Damage tolerance ; Electric potential ; Electric vehicle charging ; Electromagnetic interference ; Electromagnetism ; Frequency ranges ; Integrated circuits ; Metal oxide semiconductor field effect transistors ; Methods ; Mobile devices ; MOSFETs ; Oscillations ; Semiconductor chips ; Silicon carbide ; Switching ; Trajectory optimization ; Transistors ; Voltage ; Waveforms</subject><ispartof>Electronics (Basel), 2024-08, Vol.13 (15), p.3020</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Yeqin</creatorcontrib><creatorcontrib>Yu, Yannan</creatorcontrib><creatorcontrib>Huang, Changbin</creatorcontrib><creatorcontrib>Yan, Jichi</creatorcontrib><creatorcontrib>Wu, Haoyuan</creatorcontrib><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><title>Electronics (Basel)</title><description>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</description><subject>Amplifiers (Electronics)</subject><subject>Analog circuits</subject><subject>Battery chargers</subject><subject>Circuits</subject><subject>Damage tolerance</subject><subject>Electric potential</subject><subject>Electric vehicle charging</subject><subject>Electromagnetic interference</subject><subject>Electromagnetism</subject><subject>Frequency ranges</subject><subject>Integrated circuits</subject><subject>Metal oxide semiconductor field effect transistors</subject><subject>Methods</subject><subject>Mobile devices</subject><subject>MOSFETs</subject><subject>Oscillations</subject><subject>Semiconductor chips</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Trajectory optimization</subject><subject>Transistors</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUEtPAjEQ3hhNJMov8NLE8-K0s4_2iPhMIBxArpvSnYUS2GK3aPDXW4MHD84c5svkeyRfktxwGCAquKMtmeBda03HkecIAs6SnoBSpUoocf4HXyb9rttAHMVRIvSSxXQf7M5-6WBdyyYU1q5mrmEzO2KT6ezpcc5mnzaYtW1XbO71JmY5f2T3uqNIbNlCe6uXW2Kjg_fUBvbg7QddJxeN3nbU_71XyVu0Gr2k4-nz62g4Tg1yHlKeL7XIKWKjcpmBqA2XS45Y1kCUCzJZg3WTZ7VRUqEAKjkWsoAsk7kEiVfJ7cl37937gbpQbdzBtzGyQlAgVVHwMrIGJ9ZKb6mybeOC1yZuTTtrXEuNjf-hhCznAqGIAjwJjHdd56mp9t7utD9WHKqf0qt_Ssdvj5t1og</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lu, Yeqin</creator><creator>Yu, Yannan</creator><creator>Huang, Changbin</creator><creator>Yan, Jichi</creator><creator>Wu, Haoyuan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</title><author>Lu, Yeqin ; Yu, Yannan ; Huang, Changbin ; Yan, Jichi ; Wu, Haoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-15ba25e311c958402dc18b1337d0ee52ec4f3df54dc989320e713686044858083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifiers (Electronics)</topic><topic>Analog circuits</topic><topic>Battery chargers</topic><topic>Circuits</topic><topic>Damage tolerance</topic><topic>Electric potential</topic><topic>Electric vehicle charging</topic><topic>Electromagnetic interference</topic><topic>Electromagnetism</topic><topic>Frequency ranges</topic><topic>Integrated circuits</topic><topic>Metal oxide semiconductor field effect transistors</topic><topic>Methods</topic><topic>Mobile devices</topic><topic>MOSFETs</topic><topic>Oscillations</topic><topic>Semiconductor chips</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Trajectory optimization</topic><topic>Transistors</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yeqin</creatorcontrib><creatorcontrib>Yu, Yannan</creatorcontrib><creatorcontrib>Huang, Changbin</creatorcontrib><creatorcontrib>Yan, Jichi</creatorcontrib><creatorcontrib>Wu, Haoyuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yeqin</au><au>Yu, Yannan</au><au>Huang, Changbin</au><au>Yan, Jichi</au><au>Wu, Haoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>3020</spage><pages>3020-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Silicon carbide (SiC) MOSFETs exhibit superior performance compared to traditional silicon (Si) MOSFETs, characterized by faster switching speeds, lower on-resistance, higher breakdown voltage, and greater operational temperature tolerance. These attributes make SiC MOSFETs highly suitable for applications in electric vehicles, charging stations, and mobile devices. However, their rapid switching speed can intensify current and voltage overshoot and oscillations during device switching, leading to increased device losses or potential damage. To address this issue, this paper proposes a current-type active gate drive (AGD) circuit. The circuit first detects the rate of change in the drain current and drain-source voltage. Subsequently, it employs an analog amplifier circuit and adjustable drive resistors to decelerate the rate of change in the drain-source voltage and drain current. As a result, overshoot and oscillation in the drain-source voltage and drain current are mitigated. Experimental results demonstrate that the proposed AGD circuit can reduce drain current overshoot by 60%, drain-source voltage overshoot by 15.38%, and waveform oscillations. Additionally, the AGD circuit decreases conduction and turn-off losses by 24% and effectively mitigates electromagnetic interference (EMI) issues within the frequency range of 0.1 to 3 MHz.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13153020</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-08, Vol.13 (15), p.3020
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3090896617
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amplifiers (Electronics)
Analog circuits
Battery chargers
Circuits
Damage tolerance
Electric potential
Electric vehicle charging
Electromagnetic interference
Electromagnetism
Frequency ranges
Integrated circuits
Metal oxide semiconductor field effect transistors
Methods
Mobile devices
MOSFETs
Oscillations
Semiconductor chips
Silicon carbide
Switching
Trajectory optimization
Transistors
Voltage
Waveforms
title Optimization Method of SiC MOSFET Switching Trajectory Based on Variable Current Drive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Method%20of%20SiC%20MOSFET%20Switching%20Trajectory%20Based%20on%20Variable%20Current%20Drive&rft.jtitle=Electronics%20(Basel)&rft.au=Lu,%20Yeqin&rft.date=2024-08-01&rft.volume=13&rft.issue=15&rft.spage=3020&rft.pages=3020-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13153020&rft_dat=%3Cgale_proqu%3EA804512306%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090896617&rft_id=info:pmid/&rft_galeid=A804512306&rfr_iscdi=true