Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review
Developing methylotrophic cell factories that can efficiently catalyze organic one‐carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio‐based chemicals and biofuels is of strategic significance for building a carbon‐neutral, sustainable economic and industrial sy...
Gespeichert in:
Veröffentlicht in: | Quantitative biology 2024-03, Vol.12 (1), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Quantitative biology |
container_volume | 12 |
creator | Song, Yazhen Feng, Chenxi Zhou, Difei Ma, Zengxin He, Lian Zhang, Cong Yu, Guihong Zhao, Yan Yang, Song Xing, Xinhui |
description | Developing methylotrophic cell factories that can efficiently catalyze organic one‐carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio‐based chemicals and biofuels is of strategic significance for building a carbon‐neutral, sustainable economic and industrial system. With the rapid advancement of RNA sequencing technology and mass spectrometer analysis, researchers have used these quantitative microbiology methods extensively, especially isotope‐based metabolic flux analysis, to study the metabolic processes initiating from C1 feedstocks in natural C1‐utilizing bacteria and synthetic C1 bacteria. This paper reviews the use of advanced quantitative analysis in recent years to understand the metabolic network and basic principles in the metabolism of natural C1‐utilizing bacteria grown on methane, methanol, or formate. The acquired knowledge serves as a guide to rewire the central methylotrophic metabolism of natural C1‐utilizing bacteria to improve the carbon conversion efficiency, and to engineer non‐C1‐utilizing bacteria into synthetic strains that can use C1 feedstocks as the sole carbon and energy source. These progresses ultimately enhance the design and construction of highly efficient C1‐based cell factories to synthesize diverse high value‐added products. The integration of quantitative biology and synthetic biology will advance the iterative cycle of understand–design–build–testing–learning to enhance C1‐based biomanufacturing in the future. |
doi_str_mv | 10.1002/qub2.31 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090892539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090892539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2841-6430fab66f3bc43813a762417146674cb50640142aa45de61e16f231139540bd3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWLT4CgEPHmRr_m1211st_oOCCPa8JOlsicRNm2Rb2pOP4DP6JG6pePM038z8mG_4ELqgZEQJYTerTrMRp0dowEiVZ0JWxfGfLqtTNIzRaiIEKQVjZIB2E9_GFDqTbLvA0DTWWGgT1sokCFY5bMA53PStDxYiTh5Dq7QD7Fv4_vwyKmjf4i5ZZ3cq2V5rFWHer_GqU22yqZ-uAWvrnV9sb_EYB1hb2Jyjk0a5CMPfeoZmD_dvk6ds-vL4PBlPM8NKQTMpOGmUlrLh2gheUq4KyQQtqJCyEEbnRApCBVNK5HOQFKhsGKeUV7kges7P0OXh7jL4VQcx1e--C21vWXNSkbJiOa966upAmeBjDNDUy2A_VNjWlNT7bOt9tjWnPXl9IDfWwfY_rH6d3fVf8B-qZXt6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090892539</pqid></control><display><type>article</type><title>Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review</title><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Song, Yazhen ; Feng, Chenxi ; Zhou, Difei ; Ma, Zengxin ; He, Lian ; Zhang, Cong ; Yu, Guihong ; Zhao, Yan ; Yang, Song ; Xing, Xinhui</creator><creatorcontrib>Song, Yazhen ; Feng, Chenxi ; Zhou, Difei ; Ma, Zengxin ; He, Lian ; Zhang, Cong ; Yu, Guihong ; Zhao, Yan ; Yang, Song ; Xing, Xinhui</creatorcontrib><description>Developing methylotrophic cell factories that can efficiently catalyze organic one‐carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio‐based chemicals and biofuels is of strategic significance for building a carbon‐neutral, sustainable economic and industrial system. With the rapid advancement of RNA sequencing technology and mass spectrometer analysis, researchers have used these quantitative microbiology methods extensively, especially isotope‐based metabolic flux analysis, to study the metabolic processes initiating from C1 feedstocks in natural C1‐utilizing bacteria and synthetic C1 bacteria. This paper reviews the use of advanced quantitative analysis in recent years to understand the metabolic network and basic principles in the metabolism of natural C1‐utilizing bacteria grown on methane, methanol, or formate. The acquired knowledge serves as a guide to rewire the central methylotrophic metabolism of natural C1‐utilizing bacteria to improve the carbon conversion efficiency, and to engineer non‐C1‐utilizing bacteria into synthetic strains that can use C1 feedstocks as the sole carbon and energy source. These progresses ultimately enhance the design and construction of highly efficient C1‐based cell factories to synthesize diverse high value‐added products. The integration of quantitative biology and synthetic biology will advance the iterative cycle of understand–design–build–testing–learning to enhance C1‐based biomanufacturing in the future.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1002/qub2.31</identifier><language>eng</language><publisher>Beijing: John Wiley & Sons, Inc</publisher><subject>13C‐metabolic flux analysis ; Alternative energy sources ; Bacteria ; Biodiesel fuels ; Biofuels ; Carbon dioxide ; Carbon monoxide dehydrogenase ; Chemicals ; Energy efficiency ; Enzymes ; Factories ; Genomes ; Metabolic flux ; Metabolic networks ; Metabolism ; methylotrophic cell factories ; one‐carbon feedstock ; Oxidation ; Phosphorylation ; quantitative biology ; Raw materials</subject><ispartof>Quantitative biology, 2024-03, Vol.12 (1), p.1-14</ispartof><rights>2024 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2841-6430fab66f3bc43813a762417146674cb50640142aa45de61e16f231139540bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqub2.31$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqub2.31$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,46027,46451</link.rule.ids></links><search><creatorcontrib>Song, Yazhen</creatorcontrib><creatorcontrib>Feng, Chenxi</creatorcontrib><creatorcontrib>Zhou, Difei</creatorcontrib><creatorcontrib>Ma, Zengxin</creatorcontrib><creatorcontrib>He, Lian</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Yu, Guihong</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Xing, Xinhui</creatorcontrib><title>Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review</title><title>Quantitative biology</title><description>Developing methylotrophic cell factories that can efficiently catalyze organic one‐carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio‐based chemicals and biofuels is of strategic significance for building a carbon‐neutral, sustainable economic and industrial system. With the rapid advancement of RNA sequencing technology and mass spectrometer analysis, researchers have used these quantitative microbiology methods extensively, especially isotope‐based metabolic flux analysis, to study the metabolic processes initiating from C1 feedstocks in natural C1‐utilizing bacteria and synthetic C1 bacteria. This paper reviews the use of advanced quantitative analysis in recent years to understand the metabolic network and basic principles in the metabolism of natural C1‐utilizing bacteria grown on methane, methanol, or formate. The acquired knowledge serves as a guide to rewire the central methylotrophic metabolism of natural C1‐utilizing bacteria to improve the carbon conversion efficiency, and to engineer non‐C1‐utilizing bacteria into synthetic strains that can use C1 feedstocks as the sole carbon and energy source. These progresses ultimately enhance the design and construction of highly efficient C1‐based cell factories to synthesize diverse high value‐added products. The integration of quantitative biology and synthetic biology will advance the iterative cycle of understand–design–build–testing–learning to enhance C1‐based biomanufacturing in the future.</description><subject>13C‐metabolic flux analysis</subject><subject>Alternative energy sources</subject><subject>Bacteria</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide dehydrogenase</subject><subject>Chemicals</subject><subject>Energy efficiency</subject><subject>Enzymes</subject><subject>Factories</subject><subject>Genomes</subject><subject>Metabolic flux</subject><subject>Metabolic networks</subject><subject>Metabolism</subject><subject>methylotrophic cell factories</subject><subject>one‐carbon feedstock</subject><subject>Oxidation</subject><subject>Phosphorylation</subject><subject>quantitative biology</subject><subject>Raw materials</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM9KAzEQxoMoWLT4CgEPHmRr_m1211st_oOCCPa8JOlsicRNm2Rb2pOP4DP6JG6pePM038z8mG_4ELqgZEQJYTerTrMRp0dowEiVZ0JWxfGfLqtTNIzRaiIEKQVjZIB2E9_GFDqTbLvA0DTWWGgT1sokCFY5bMA53PStDxYiTh5Dq7QD7Fv4_vwyKmjf4i5ZZ3cq2V5rFWHer_GqU22yqZ-uAWvrnV9sb_EYB1hb2Jyjk0a5CMPfeoZmD_dvk6ds-vL4PBlPM8NKQTMpOGmUlrLh2gheUq4KyQQtqJCyEEbnRApCBVNK5HOQFKhsGKeUV7kges7P0OXh7jL4VQcx1e--C21vWXNSkbJiOa966upAmeBjDNDUy2A_VNjWlNT7bOt9tjWnPXl9IDfWwfY_rH6d3fVf8B-qZXt6</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Song, Yazhen</creator><creator>Feng, Chenxi</creator><creator>Zhou, Difei</creator><creator>Ma, Zengxin</creator><creator>He, Lian</creator><creator>Zhang, Cong</creator><creator>Yu, Guihong</creator><creator>Zhao, Yan</creator><creator>Yang, Song</creator><creator>Xing, Xinhui</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>202403</creationdate><title>Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review</title><author>Song, Yazhen ; Feng, Chenxi ; Zhou, Difei ; Ma, Zengxin ; He, Lian ; Zhang, Cong ; Yu, Guihong ; Zhao, Yan ; Yang, Song ; Xing, Xinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2841-6430fab66f3bc43813a762417146674cb50640142aa45de61e16f231139540bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13C‐metabolic flux analysis</topic><topic>Alternative energy sources</topic><topic>Bacteria</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide dehydrogenase</topic><topic>Chemicals</topic><topic>Energy efficiency</topic><topic>Enzymes</topic><topic>Factories</topic><topic>Genomes</topic><topic>Metabolic flux</topic><topic>Metabolic networks</topic><topic>Metabolism</topic><topic>methylotrophic cell factories</topic><topic>one‐carbon feedstock</topic><topic>Oxidation</topic><topic>Phosphorylation</topic><topic>quantitative biology</topic><topic>Raw materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yazhen</creatorcontrib><creatorcontrib>Feng, Chenxi</creatorcontrib><creatorcontrib>Zhou, Difei</creatorcontrib><creatorcontrib>Ma, Zengxin</creatorcontrib><creatorcontrib>He, Lian</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Yu, Guihong</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Xing, Xinhui</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yazhen</au><au>Feng, Chenxi</au><au>Zhou, Difei</au><au>Ma, Zengxin</au><au>He, Lian</au><au>Zhang, Cong</au><au>Yu, Guihong</au><au>Zhao, Yan</au><au>Yang, Song</au><au>Xing, Xinhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review</atitle><jtitle>Quantitative biology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Developing methylotrophic cell factories that can efficiently catalyze organic one‐carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio‐based chemicals and biofuels is of strategic significance for building a carbon‐neutral, sustainable economic and industrial system. With the rapid advancement of RNA sequencing technology and mass spectrometer analysis, researchers have used these quantitative microbiology methods extensively, especially isotope‐based metabolic flux analysis, to study the metabolic processes initiating from C1 feedstocks in natural C1‐utilizing bacteria and synthetic C1 bacteria. This paper reviews the use of advanced quantitative analysis in recent years to understand the metabolic network and basic principles in the metabolism of natural C1‐utilizing bacteria grown on methane, methanol, or formate. The acquired knowledge serves as a guide to rewire the central methylotrophic metabolism of natural C1‐utilizing bacteria to improve the carbon conversion efficiency, and to engineer non‐C1‐utilizing bacteria into synthetic strains that can use C1 feedstocks as the sole carbon and energy source. These progresses ultimately enhance the design and construction of highly efficient C1‐based cell factories to synthesize diverse high value‐added products. The integration of quantitative biology and synthetic biology will advance the iterative cycle of understand–design–build–testing–learning to enhance C1‐based biomanufacturing in the future.</abstract><cop>Beijing</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/qub2.31</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-4689 |
ispartof | Quantitative biology, 2024-03, Vol.12 (1), p.1-14 |
issn | 2095-4689 2095-4697 |
language | eng |
recordid | cdi_proquest_journals_3090892539 |
source | Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | 13C‐metabolic flux analysis Alternative energy sources Bacteria Biodiesel fuels Biofuels Carbon dioxide Carbon monoxide dehydrogenase Chemicals Energy efficiency Enzymes Factories Genomes Metabolic flux Metabolic networks Metabolism methylotrophic cell factories one‐carbon feedstock Oxidation Phosphorylation quantitative biology Raw materials |
title | Constructing efficient bacterial cell factories to enable one‐carbon utilization based on quantitative biology: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20efficient%20bacterial%20cell%20factories%20to%20enable%20one%E2%80%90carbon%20utilization%20based%20on%20quantitative%20biology:%20A%20review&rft.jtitle=Quantitative%20biology&rft.au=Song,%20Yazhen&rft.date=2024-03&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1002/qub2.31&rft_dat=%3Cproquest_cross%3E3090892539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090892539&rft_id=info:pmid/&rfr_iscdi=true |