High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties

Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-07, Vol.14 (33), p.23672-23682
Hauptverfasser: Liu, Youhai, Yang, Fusheng, Zhang, Wenquan, Xia, Honglei, Wu, Zhen, Zhang, Zaoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23682
container_issue 33
container_start_page 23672
container_title RSC advances
container_volume 14
creator Liu, Youhai
Yang, Fusheng
Zhang, Wenquan
Xia, Honglei
Wu, Zhen
Zhang, Zaoxiao
description Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed. In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.
doi_str_mv 10.1039/d4ra03233k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3090775368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090775368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</originalsourceid><addsrcrecordid>eNpVkk1v1DAQhi0EolXphTvIEjdEwB9JNjmhqlCKqISE4ISQ5diziUtip2NnoT-q_xFvtyzFF488z7zz2mNCnnL2mjPZvrElaiaFlD8fkEPByroQrG4f3osPyHGMlyyvuuKi5o_JgWzZaiUFPyQ3564f6IxgXHTBUwswFyNo9M73dAoWRmrC1DkPlv5yaaBDLijSgGHph3lJNBoEuKVToNZFEzaAdL3EXPC9elX9oJ0bIAEGc21GZyh4wB5Sjiadj50e404ZfhsYR_Bp2zFbGsBHt4HsLsyAyUF8Qh6tMw7Hd_sR-Xb2_uvpeXHx-cPH05OLwoimSkWnbanXdWt5m29c1qbRjdRCsgpkDnWlBaw6sE3F2cqIlrdCdKXQtmOiAWnkEXm7052XbgJrsifUo5rRTRqvVdBO_Z_xblB92CjORVPKss0KL-4UMFwtEJO6DAv6bFpJtn39StZNpl7uKIMhRoT1vgVnajte9a78cnI73k8Zfn7f1B79O8wMPNsBGM0---9_yD_V2699</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090775368</pqid></control><display><type>article</type><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</creator><creatorcontrib>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</creatorcontrib><description>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed. In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra03233k</identifier><identifier>PMID: 39077321</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Crystal structure ; Deep learning ; Density functional theory ; Detonation ; Energetic materials ; Message passing ; Neural networks ; Performance prediction ; Screening ; Thermal stability</subject><ispartof>RSC advances, 2024-07, Vol.14 (33), p.23672-23682</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</cites><orcidid>0000-0002-2766-5040 ; 0000-0002-8598-9625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39077321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Youhai</creatorcontrib><creatorcontrib>Yang, Fusheng</creatorcontrib><creatorcontrib>Zhang, Wenquan</creatorcontrib><creatorcontrib>Xia, Honglei</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Zhang, Zaoxiao</creatorcontrib><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed. In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</description><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Deep learning</subject><subject>Density functional theory</subject><subject>Detonation</subject><subject>Energetic materials</subject><subject>Message passing</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Screening</subject><subject>Thermal stability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkk1v1DAQhi0EolXphTvIEjdEwB9JNjmhqlCKqISE4ISQ5diziUtip2NnoT-q_xFvtyzFF488z7zz2mNCnnL2mjPZvrElaiaFlD8fkEPByroQrG4f3osPyHGMlyyvuuKi5o_JgWzZaiUFPyQ3564f6IxgXHTBUwswFyNo9M73dAoWRmrC1DkPlv5yaaBDLijSgGHph3lJNBoEuKVToNZFEzaAdL3EXPC9elX9oJ0bIAEGc21GZyh4wB5Sjiadj50e404ZfhsYR_Bp2zFbGsBHt4HsLsyAyUF8Qh6tMw7Hd_sR-Xb2_uvpeXHx-cPH05OLwoimSkWnbanXdWt5m29c1qbRjdRCsgpkDnWlBaw6sE3F2cqIlrdCdKXQtmOiAWnkEXm7052XbgJrsifUo5rRTRqvVdBO_Z_xblB92CjORVPKss0KL-4UMFwtEJO6DAv6bFpJtn39StZNpl7uKIMhRoT1vgVnajte9a78cnI73k8Zfn7f1B79O8wMPNsBGM0---9_yD_V2699</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Liu, Youhai</creator><creator>Yang, Fusheng</creator><creator>Zhang, Wenquan</creator><creator>Xia, Honglei</creator><creator>Wu, Zhen</creator><creator>Zhang, Zaoxiao</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2766-5040</orcidid><orcidid>https://orcid.org/0000-0002-8598-9625</orcidid></search><sort><creationdate>20240726</creationdate><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><author>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Deep learning</topic><topic>Density functional theory</topic><topic>Detonation</topic><topic>Energetic materials</topic><topic>Message passing</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Screening</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Youhai</creatorcontrib><creatorcontrib>Yang, Fusheng</creatorcontrib><creatorcontrib>Zhang, Wenquan</creatorcontrib><creatorcontrib>Xia, Honglei</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Zhang, Zaoxiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Youhai</au><au>Yang, Fusheng</au><au>Zhang, Wenquan</au><au>Xia, Honglei</au><au>Wu, Zhen</au><au>Zhang, Zaoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-07-26</date><risdate>2024</risdate><volume>14</volume><issue>33</issue><spage>23672</spage><epage>23682</epage><pages>23672-23682</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed. In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3 H -pyrrolo[1,2- b ][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39077321</pmid><doi>10.1039/d4ra03233k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2766-5040</orcidid><orcidid>https://orcid.org/0000-0002-8598-9625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-07, Vol.14 (33), p.23672-23682
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_journals_3090775368
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Crystal structure
Deep learning
Density functional theory
Detonation
Energetic materials
Message passing
Neural networks
Performance prediction
Screening
Thermal stability
title High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20precision%20deep-learning%20model%20combined%20with%20high-throughput%20screening%20to%20discover%20fused%20%5B5,5%5D%20biheterocyclic%20energetic%20materials%20with%20excellent%20comprehensive%20properties&rft.jtitle=RSC%20advances&rft.au=Liu,%20Youhai&rft.date=2024-07-26&rft.volume=14&rft.issue=33&rft.spage=23672&rft.epage=23682&rft.pages=23672-23682&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra03233k&rft_dat=%3Cproquest_pubme%3E3090775368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090775368&rft_id=info:pmid/39077321&rfr_iscdi=true