High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties
Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directe...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-07, Vol.14 (33), p.23672-23682 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23682 |
---|---|
container_issue | 33 |
container_start_page | 23672 |
container_title | RSC advances |
container_volume | 14 |
creator | Liu, Youhai Yang, Fusheng Zhang, Wenquan Xia, Honglei Wu, Zhen Zhang, Zaoxiao |
description | Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed.
In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule. |
doi_str_mv | 10.1039/d4ra03233k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3090775368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090775368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</originalsourceid><addsrcrecordid>eNpVkk1v1DAQhi0EolXphTvIEjdEwB9JNjmhqlCKqISE4ISQ5diziUtip2NnoT-q_xFvtyzFF488z7zz2mNCnnL2mjPZvrElaiaFlD8fkEPByroQrG4f3osPyHGMlyyvuuKi5o_JgWzZaiUFPyQ3564f6IxgXHTBUwswFyNo9M73dAoWRmrC1DkPlv5yaaBDLijSgGHph3lJNBoEuKVToNZFEzaAdL3EXPC9elX9oJ0bIAEGc21GZyh4wB5Sjiadj50e404ZfhsYR_Bp2zFbGsBHt4HsLsyAyUF8Qh6tMw7Hd_sR-Xb2_uvpeXHx-cPH05OLwoimSkWnbanXdWt5m29c1qbRjdRCsgpkDnWlBaw6sE3F2cqIlrdCdKXQtmOiAWnkEXm7052XbgJrsifUo5rRTRqvVdBO_Z_xblB92CjORVPKss0KL-4UMFwtEJO6DAv6bFpJtn39StZNpl7uKIMhRoT1vgVnajte9a78cnI73k8Zfn7f1B79O8wMPNsBGM0---9_yD_V2699</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090775368</pqid></control><display><type>article</type><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</creator><creatorcontrib>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</creatorcontrib><description>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed.
In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra03233k</identifier><identifier>PMID: 39077321</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Crystal structure ; Deep learning ; Density functional theory ; Detonation ; Energetic materials ; Message passing ; Neural networks ; Performance prediction ; Screening ; Thermal stability</subject><ispartof>RSC advances, 2024-07, Vol.14 (33), p.23672-23682</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</cites><orcidid>0000-0002-2766-5040 ; 0000-0002-8598-9625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39077321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Youhai</creatorcontrib><creatorcontrib>Yang, Fusheng</creatorcontrib><creatorcontrib>Zhang, Wenquan</creatorcontrib><creatorcontrib>Xia, Honglei</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Zhang, Zaoxiao</creatorcontrib><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed.
In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</description><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Deep learning</subject><subject>Density functional theory</subject><subject>Detonation</subject><subject>Energetic materials</subject><subject>Message passing</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Screening</subject><subject>Thermal stability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkk1v1DAQhi0EolXphTvIEjdEwB9JNjmhqlCKqISE4ISQ5diziUtip2NnoT-q_xFvtyzFF488z7zz2mNCnnL2mjPZvrElaiaFlD8fkEPByroQrG4f3osPyHGMlyyvuuKi5o_JgWzZaiUFPyQ3564f6IxgXHTBUwswFyNo9M73dAoWRmrC1DkPlv5yaaBDLijSgGHph3lJNBoEuKVToNZFEzaAdL3EXPC9elX9oJ0bIAEGc21GZyh4wB5Sjiadj50e404ZfhsYR_Bp2zFbGsBHt4HsLsyAyUF8Qh6tMw7Hd_sR-Xb2_uvpeXHx-cPH05OLwoimSkWnbanXdWt5m29c1qbRjdRCsgpkDnWlBaw6sE3F2cqIlrdCdKXQtmOiAWnkEXm7052XbgJrsifUo5rRTRqvVdBO_Z_xblB92CjORVPKss0KL-4UMFwtEJO6DAv6bFpJtn39StZNpl7uKIMhRoT1vgVnajte9a78cnI73k8Zfn7f1B79O8wMPNsBGM0---9_yD_V2699</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Liu, Youhai</creator><creator>Yang, Fusheng</creator><creator>Zhang, Wenquan</creator><creator>Xia, Honglei</creator><creator>Wu, Zhen</creator><creator>Zhang, Zaoxiao</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2766-5040</orcidid><orcidid>https://orcid.org/0000-0002-8598-9625</orcidid></search><sort><creationdate>20240726</creationdate><title>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</title><author>Liu, Youhai ; Yang, Fusheng ; Zhang, Wenquan ; Xia, Honglei ; Wu, Zhen ; Zhang, Zaoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-bad4af69d1951246c8a83a2305e38a8a5a2e7bed85107c291922b42adb028e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Deep learning</topic><topic>Density functional theory</topic><topic>Detonation</topic><topic>Energetic materials</topic><topic>Message passing</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Screening</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Youhai</creatorcontrib><creatorcontrib>Yang, Fusheng</creatorcontrib><creatorcontrib>Zhang, Wenquan</creatorcontrib><creatorcontrib>Xia, Honglei</creatorcontrib><creatorcontrib>Wu, Zhen</creatorcontrib><creatorcontrib>Zhang, Zaoxiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Youhai</au><au>Yang, Fusheng</au><au>Zhang, Wenquan</au><au>Xia, Honglei</au><au>Wu, Zhen</au><au>Zhang, Zaoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-07-26</date><risdate>2024</risdate><volume>14</volume><issue>33</issue><spage>23672</spage><epage>23682</epage><pages>23672-23682</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Finding novel energetic materials with good comprehensive performance has always been challenging because of the low efficiency in conventional trial and error experimental procedure. In this paper, we established a deep learning model with high prediction accuracy using embedded features in Directed Message Passing Neural Networks. The model combined with high-throughput screening was shown to facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the targeting molecules are consistent with the predicted results from the deep learning model. Furthermore, 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with both good detonation properties and thermal stability was screened out, whose crystal structure and intermolecular interactions were also analyzed.
In this study, we used D-MPNN embedded with features to rapid discovery of 6,7-trinitro-3
H
-pyrrolo[1,2-
b
][1,2,4]triazo-5-amine with high energy and excellent thermal stability. DFT calculations prove the performances of the targeting molecule.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39077321</pmid><doi>10.1039/d4ra03233k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2766-5040</orcidid><orcidid>https://orcid.org/0000-0002-8598-9625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-07, Vol.14 (33), p.23672-23682 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_journals_3090775368 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry Crystal structure Deep learning Density functional theory Detonation Energetic materials Message passing Neural networks Performance prediction Screening Thermal stability |
title | High precision deep-learning model combined with high-throughput screening to discover fused [5,5] biheterocyclic energetic materials with excellent comprehensive properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20precision%20deep-learning%20model%20combined%20with%20high-throughput%20screening%20to%20discover%20fused%20%5B5,5%5D%20biheterocyclic%20energetic%20materials%20with%20excellent%20comprehensive%20properties&rft.jtitle=RSC%20advances&rft.au=Liu,%20Youhai&rft.date=2024-07-26&rft.volume=14&rft.issue=33&rft.spage=23672&rft.epage=23682&rft.pages=23672-23682&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra03233k&rft_dat=%3Cproquest_pubme%3E3090775368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090775368&rft_id=info:pmid/39077321&rfr_iscdi=true |