MarQSim: Reconciling Determinism and Randomness in Compiler Optimization for Quantum Simulation
Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling deterministic and randomized compilation, lack appropriate intermediate representations, and struggle to guarantee correctness. Addressing these challenges, we present MarQSim, a novel compilation framework. MarQSim leverages a Markov chain-based approach, encapsulated in the Hamiltonian Term Transition Graph, adeptly reconciling deterministic and randomized compilation benefits. We rigorously prove its algorithmic efficiency and correctness criteria. Furthermore, we formulate a Min-Cost Flow model that can tune transition matrices to enforce correctness while accommodating various optimization objectives. Experimental results demonstrate MarQSim's superiority in generating more efficient quantum circuits for simulating various quantum Hamiltonians while maintaining precision. |
---|---|
ISSN: | 2331-8422 |