MarQSim: Reconciling Determinism and Randomness in Compiler Optimization for Quantum Simulation

Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Cao, Xiuqi, Zhou, Junyu, Liu, Yuhao, Shi, Yunong, Li, Gushu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling deterministic and randomized compilation, lack appropriate intermediate representations, and struggle to guarantee correctness. Addressing these challenges, we present MarQSim, a novel compilation framework. MarQSim leverages a Markov chain-based approach, encapsulated in the Hamiltonian Term Transition Graph, adeptly reconciling deterministic and randomized compilation benefits. We rigorously prove its algorithmic efficiency and correctness criteria. Furthermore, we formulate a Min-Cost Flow model that can tune transition matrices to enforce correctness while accommodating various optimization objectives. Experimental results demonstrate MarQSim's superiority in generating more efficient quantum circuits for simulating various quantum Hamiltonians while maintaining precision.
ISSN:2331-8422