Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy
Conducting polymers are semiconductors whose applications cover a wide range of devices. Their versatility is due, in addition to other factors, to properties that can be easily modulated according to the intended application. It is therefore important to study and map the electronic structure of th...
Gespeichert in:
Veröffentlicht in: | Electrochemical Science Advances 2022-04, Vol.2 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Electrochemical Science Advances |
container_volume | 2 |
creator | Gonçalves, Roger Paiva, Robert S. Ramírez, Andrés M. R. Mwanda, Jonathan A. Pereira, Ernesto C. Cuesta, Angel |
description | Conducting polymers are semiconductors whose applications cover a wide range of devices. Their versatility is due, in addition to other factors, to properties that can be easily modulated according to the intended application. It is therefore important to study and map the electronic structure of these materials for a better correlation between structure and properties. Electrochemical scanning tunneling spectroscopy (EC‐STS) can be a powerful tool to characterize the electronic structure of the semiconductor interface. In this work, we have used image‐based EC‐STS (IB‐EC‐STS) to describe quantitatively the band structure of an electrochemically deposited polypyrrole film. IB‐EC‐STS located the band edge of the polymer's valence band (VB) at 0.95 V vs. RHE (‐5.33 eV in the absolute potential scale) and the intragap polaron states formed when the polymer is doped, at 0.46 V vs. RHE (‐4.84 eV). The IB‐EC‐STS data were cross‐checked with electrochemical impedance spectroscopy (EIS) and Mott‐Schottky analysis of the interfacial capacitance. The DOS spectrum obtained from EIS data is consistent with the STS‐deduced location of the VB and the polarons. |
doi_str_mv | 10.1002/elsa.202100028 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3090534378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744082365</galeid><sourcerecordid>A744082365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3968-1e67f874f0e8d7f972d32e968403367d89dc702f49524b99bae9a6da072b686b3</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEhV0ZY7E3OLYSWyPVVV-pCIGYLYc57pNldrBTlRl4xF4Rp4EpwXKhjz4Xvs7x7o-UXSVoGmCEL6B2sspRjg0CLOTaIRzziYZp_T0T30ejb3f7JEApskoco-yaSqzits1xFCDap01lYp96zrVdg5iq-PG1n3TO2driHdVu46rrVzB5_tHIT2UPzK1hm2lZB17JY3Ze3bGQD1UvtkjXtmmv4zOtKw9jL_3i-j1dvEyv58sn-4e5rPlRBGes0kCOdWMphoBK6nmFJcEQ7hJESE5LRkvFUVYpzzDacF5IYHLvJSI4iJneUEuouuDb-PsWwe-FRvbOROeFARxlJGUUBao6YFayRpEZbRtnVRhlcM01oCuwvmMpilimOTZUaDCPN6BFo0L_-F6kSAxZCGGLMRvFkHAD4JdcOr_ocVi-Tw7ar8AYrKQdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090534378</pqid></control><display><type>article</type><title>Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gonçalves, Roger ; Paiva, Robert S. ; Ramírez, Andrés M. R. ; Mwanda, Jonathan A. ; Pereira, Ernesto C. ; Cuesta, Angel</creator><creatorcontrib>Gonçalves, Roger ; Paiva, Robert S. ; Ramírez, Andrés M. R. ; Mwanda, Jonathan A. ; Pereira, Ernesto C. ; Cuesta, Angel</creatorcontrib><description>Conducting polymers are semiconductors whose applications cover a wide range of devices. Their versatility is due, in addition to other factors, to properties that can be easily modulated according to the intended application. It is therefore important to study and map the electronic structure of these materials for a better correlation between structure and properties. Electrochemical scanning tunneling spectroscopy (EC‐STS) can be a powerful tool to characterize the electronic structure of the semiconductor interface. In this work, we have used image‐based EC‐STS (IB‐EC‐STS) to describe quantitatively the band structure of an electrochemically deposited polypyrrole film. IB‐EC‐STS located the band edge of the polymer's valence band (VB) at 0.95 V vs. RHE (‐5.33 eV in the absolute potential scale) and the intragap polaron states formed when the polymer is doped, at 0.46 V vs. RHE (‐4.84 eV). The IB‐EC‐STS data were cross‐checked with electrochemical impedance spectroscopy (EIS) and Mott‐Schottky analysis of the interfacial capacitance. The DOS spectrum obtained from EIS data is consistent with the STS‐deduced location of the VB and the polarons.</description><identifier>ISSN: 2698-5977</identifier><identifier>EISSN: 2698-5977</identifier><identifier>DOI: 10.1002/elsa.202100028</identifier><language>eng</language><publisher>Aachen: John Wiley & Sons, Inc</publisher><subject>electrochemical scanning tunneling microscopy ; Electrodes ; Electrolytes ; electronic structure ; Electrons ; Energy ; impedance spectroscopy ; Oxidation ; Point defects ; Polymers ; polypyrrole ; Scanning devices ; Semiconductors ; Spectrum analysis ; Voltammetry</subject><ispartof>Electrochemical Science Advances, 2022-04, Vol.2 (2), p.n/a</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3968-1e67f874f0e8d7f972d32e968403367d89dc702f49524b99bae9a6da072b686b3</citedby><cites>FETCH-LOGICAL-c3968-1e67f874f0e8d7f972d32e968403367d89dc702f49524b99bae9a6da072b686b3</cites><orcidid>0000-0003-1058-302X ; 0000-0003-4243-1848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felsa.202100028$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felsa.202100028$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Gonçalves, Roger</creatorcontrib><creatorcontrib>Paiva, Robert S.</creatorcontrib><creatorcontrib>Ramírez, Andrés M. R.</creatorcontrib><creatorcontrib>Mwanda, Jonathan A.</creatorcontrib><creatorcontrib>Pereira, Ernesto C.</creatorcontrib><creatorcontrib>Cuesta, Angel</creatorcontrib><title>Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy</title><title>Electrochemical Science Advances</title><description>Conducting polymers are semiconductors whose applications cover a wide range of devices. Their versatility is due, in addition to other factors, to properties that can be easily modulated according to the intended application. It is therefore important to study and map the electronic structure of these materials for a better correlation between structure and properties. Electrochemical scanning tunneling spectroscopy (EC‐STS) can be a powerful tool to characterize the electronic structure of the semiconductor interface. In this work, we have used image‐based EC‐STS (IB‐EC‐STS) to describe quantitatively the band structure of an electrochemically deposited polypyrrole film. IB‐EC‐STS located the band edge of the polymer's valence band (VB) at 0.95 V vs. RHE (‐5.33 eV in the absolute potential scale) and the intragap polaron states formed when the polymer is doped, at 0.46 V vs. RHE (‐4.84 eV). The IB‐EC‐STS data were cross‐checked with electrochemical impedance spectroscopy (EIS) and Mott‐Schottky analysis of the interfacial capacitance. The DOS spectrum obtained from EIS data is consistent with the STS‐deduced location of the VB and the polarons.</description><subject>electrochemical scanning tunneling microscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>electronic structure</subject><subject>Electrons</subject><subject>Energy</subject><subject>impedance spectroscopy</subject><subject>Oxidation</subject><subject>Point defects</subject><subject>Polymers</subject><subject>polypyrrole</subject><subject>Scanning devices</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><subject>Voltammetry</subject><issn>2698-5977</issn><issn>2698-5977</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkb1OwzAUhSMEEhV0ZY7E3OLYSWyPVVV-pCIGYLYc57pNldrBTlRl4xF4Rp4EpwXKhjz4Xvs7x7o-UXSVoGmCEL6B2sspRjg0CLOTaIRzziYZp_T0T30ejb3f7JEApskoco-yaSqzits1xFCDap01lYp96zrVdg5iq-PG1n3TO2driHdVu46rrVzB5_tHIT2UPzK1hm2lZB17JY3Ze3bGQD1UvtkjXtmmv4zOtKw9jL_3i-j1dvEyv58sn-4e5rPlRBGes0kCOdWMphoBK6nmFJcEQ7hJESE5LRkvFUVYpzzDacF5IYHLvJSI4iJneUEuouuDb-PsWwe-FRvbOROeFARxlJGUUBao6YFayRpEZbRtnVRhlcM01oCuwvmMpilimOTZUaDCPN6BFo0L_-F6kSAxZCGGLMRvFkHAD4JdcOr_ocVi-Tw7ar8AYrKQdg</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Gonçalves, Roger</creator><creator>Paiva, Robert S.</creator><creator>Ramírez, Andrés M. R.</creator><creator>Mwanda, Jonathan A.</creator><creator>Pereira, Ernesto C.</creator><creator>Cuesta, Angel</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1058-302X</orcidid><orcidid>https://orcid.org/0000-0003-4243-1848</orcidid></search><sort><creationdate>202204</creationdate><title>Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy</title><author>Gonçalves, Roger ; Paiva, Robert S. ; Ramírez, Andrés M. R. ; Mwanda, Jonathan A. ; Pereira, Ernesto C. ; Cuesta, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3968-1e67f874f0e8d7f972d32e968403367d89dc702f49524b99bae9a6da072b686b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>electrochemical scanning tunneling microscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>electronic structure</topic><topic>Electrons</topic><topic>Energy</topic><topic>impedance spectroscopy</topic><topic>Oxidation</topic><topic>Point defects</topic><topic>Polymers</topic><topic>polypyrrole</topic><topic>Scanning devices</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Roger</creatorcontrib><creatorcontrib>Paiva, Robert S.</creatorcontrib><creatorcontrib>Ramírez, Andrés M. R.</creatorcontrib><creatorcontrib>Mwanda, Jonathan A.</creatorcontrib><creatorcontrib>Pereira, Ernesto C.</creatorcontrib><creatorcontrib>Cuesta, Angel</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electrochemical Science Advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Roger</au><au>Paiva, Robert S.</au><au>Ramírez, Andrés M. R.</au><au>Mwanda, Jonathan A.</au><au>Pereira, Ernesto C.</au><au>Cuesta, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy</atitle><jtitle>Electrochemical Science Advances</jtitle><date>2022-04</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><epage>n/a</epage><issn>2698-5977</issn><eissn>2698-5977</eissn><abstract>Conducting polymers are semiconductors whose applications cover a wide range of devices. Their versatility is due, in addition to other factors, to properties that can be easily modulated according to the intended application. It is therefore important to study and map the electronic structure of these materials for a better correlation between structure and properties. Electrochemical scanning tunneling spectroscopy (EC‐STS) can be a powerful tool to characterize the electronic structure of the semiconductor interface. In this work, we have used image‐based EC‐STS (IB‐EC‐STS) to describe quantitatively the band structure of an electrochemically deposited polypyrrole film. IB‐EC‐STS located the band edge of the polymer's valence band (VB) at 0.95 V vs. RHE (‐5.33 eV in the absolute potential scale) and the intragap polaron states formed when the polymer is doped, at 0.46 V vs. RHE (‐4.84 eV). The IB‐EC‐STS data were cross‐checked with electrochemical impedance spectroscopy (EIS) and Mott‐Schottky analysis of the interfacial capacitance. The DOS spectrum obtained from EIS data is consistent with the STS‐deduced location of the VB and the polarons.</abstract><cop>Aachen</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/elsa.202100028</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1058-302X</orcidid><orcidid>https://orcid.org/0000-0003-4243-1848</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2698-5977 |
ispartof | Electrochemical Science Advances, 2022-04, Vol.2 (2), p.n/a |
issn | 2698-5977 2698-5977 |
language | eng |
recordid | cdi_proquest_journals_3090534378 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | electrochemical scanning tunneling microscopy Electrodes Electrolytes electronic structure Electrons Energy impedance spectroscopy Oxidation Point defects Polymers polypyrrole Scanning devices Semiconductors Spectrum analysis Voltammetry |
title | Mapping the electronic structure of polypyrrole with image‐based electrochemical scanning tunneling spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20electronic%20structure%20of%20polypyrrole%20with%20image%E2%80%90based%20electrochemical%20scanning%20tunneling%20spectroscopy&rft.jtitle=Electrochemical%20Science%20Advances&rft.au=Gon%C3%A7alves,%20Roger&rft.date=2022-04&rft.volume=2&rft.issue=2&rft.epage=n/a&rft.issn=2698-5977&rft.eissn=2698-5977&rft_id=info:doi/10.1002/elsa.202100028&rft_dat=%3Cgale_proqu%3EA744082365%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090534378&rft_id=info:pmid/&rft_galeid=A744082365&rfr_iscdi=true |