Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring
Shear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robu...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-08, Vol.34 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Yin, Jie Wong, Voon‐Kean Xu, Qinwen Subhodayam, Percis Teena Christopher Yousry, Yasmin Mohamed Shashidhara, Acharya Zhou, Jie Luo, Ping Lim, Poh Chong Wei, FengXia Lim, David Boon Kiang Sun, Chengliang Yao, Kui |
description | Shear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.
Direct‐write conformable shear mode ultrasonic transducers are designed and produced from lead‐free piezoelectric potassium sodium niobate (KNN) ceramic coatings. These coating transducers ensure consistent, non‐dispersive shear wave transmission and stable ultrasonic signals across various temperatures and underwater conditions. Such reliability and robustness highlight their potential for monitoring the health of submerged or subterranean structures, especially in harsh environments. |
doi_str_mv | 10.1002/adfm.202401544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090216782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090216782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-41229791344b1d526ce673e29f650c75125fbdf87457346f863b131f32387e163</originalsourceid><addsrcrecordid>eNqFUc1q20AQFqWBukmuOS_0bHf_tCv1Zpw4CTik4AR6Eytp1paRdtPZVUJ6yiPkEfpsfZKscUmPPX0z8P3M8GXZGaMzRin_alo7zDjlkrJcyg_ZhCmmpoLy4uP7zH58yj6HsKOUaS3kJPu98M56HEzdA1lvwSC58S2QOzQutGMDGIhFP5AVmPbPy-sSAcj3Dn556KGJ2DVkAWiGPXoTO7cJ38jckWvn_GPaH4Hc9xFN8C5R1r4fY-cdSZFkPdYD4AZaso44NnFE05MrMH3cphtcFz0mu5PsyJo-wOlfPM7ulxd3i6vp6vbyejFfTRuuuZxKxnmpSyakrFmbc9WA0gJ4aVVOG50zntu6tYWWefpb2UKJmglmBReFBqbEcfbl4PuA_ucIIVY7P6JLkZWgJeVM6YIn1uzAatCHgGCrB-wGg88Vo9W-hWrfQvXeQhKUB8FT18Pzf9jV_Hx580_7Btnbjgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090216782</pqid></control><display><type>article</type><title>Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring</title><source>Access via Wiley Online Library</source><creator>Yin, Jie ; Wong, Voon‐Kean ; Xu, Qinwen ; Subhodayam, Percis Teena Christopher ; Yousry, Yasmin Mohamed ; Shashidhara, Acharya ; Zhou, Jie ; Luo, Ping ; Lim, Poh Chong ; Wei, FengXia ; Lim, David Boon Kiang ; Sun, Chengliang ; Yao, Kui</creator><creatorcontrib>Yin, Jie ; Wong, Voon‐Kean ; Xu, Qinwen ; Subhodayam, Percis Teena Christopher ; Yousry, Yasmin Mohamed ; Shashidhara, Acharya ; Zhou, Jie ; Luo, Ping ; Lim, Poh Chong ; Wei, FengXia ; Lim, David Boon Kiang ; Sun, Chengliang ; Yao, Kui</creatorcontrib><description>Shear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.
Direct‐write conformable shear mode ultrasonic transducers are designed and produced from lead‐free piezoelectric potassium sodium niobate (KNN) ceramic coatings. These coating transducers ensure consistent, non‐dispersive shear wave transmission and stable ultrasonic signals across various temperatures and underwater conditions. Such reliability and robustness highlight their potential for monitoring the health of submerged or subterranean structures, especially in harsh environments.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401544</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acoustic coupling ; Ceramic coatings ; Ceramic glazes ; Effectiveness ; Frequency ranges ; lead‐free piezoelectric ceramics ; Lithium ; Piezoelectric ceramics ; Protective coatings ; Shear ; shear mode ultrasonic transducers ; Structural health monitoring ; thermal sprayed coatings ; Transducers ; Ultrasonic testing ; Ultrasonic transducers ; Underground structures</subject><ispartof>Advanced functional materials, 2024-08, Vol.34 (32), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-41229791344b1d526ce673e29f650c75125fbdf87457346f863b131f32387e163</cites><orcidid>0000-0003-0480-9547 ; 0000-0002-9024-6324 ; 0000-0001-5875-4815 ; 0000-0002-4329-0285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Wong, Voon‐Kean</creatorcontrib><creatorcontrib>Xu, Qinwen</creatorcontrib><creatorcontrib>Subhodayam, Percis Teena Christopher</creatorcontrib><creatorcontrib>Yousry, Yasmin Mohamed</creatorcontrib><creatorcontrib>Shashidhara, Acharya</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Lim, Poh Chong</creatorcontrib><creatorcontrib>Wei, FengXia</creatorcontrib><creatorcontrib>Lim, David Boon Kiang</creatorcontrib><creatorcontrib>Sun, Chengliang</creatorcontrib><creatorcontrib>Yao, Kui</creatorcontrib><title>Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring</title><title>Advanced functional materials</title><description>Shear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.
Direct‐write conformable shear mode ultrasonic transducers are designed and produced from lead‐free piezoelectric potassium sodium niobate (KNN) ceramic coatings. These coating transducers ensure consistent, non‐dispersive shear wave transmission and stable ultrasonic signals across various temperatures and underwater conditions. Such reliability and robustness highlight their potential for monitoring the health of submerged or subterranean structures, especially in harsh environments.</description><subject>Acoustic coupling</subject><subject>Ceramic coatings</subject><subject>Ceramic glazes</subject><subject>Effectiveness</subject><subject>Frequency ranges</subject><subject>lead‐free piezoelectric ceramics</subject><subject>Lithium</subject><subject>Piezoelectric ceramics</subject><subject>Protective coatings</subject><subject>Shear</subject><subject>shear mode ultrasonic transducers</subject><subject>Structural health monitoring</subject><subject>thermal sprayed coatings</subject><subject>Transducers</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic transducers</subject><subject>Underground structures</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUc1q20AQFqWBukmuOS_0bHf_tCv1Zpw4CTik4AR6Eytp1paRdtPZVUJ6yiPkEfpsfZKscUmPPX0z8P3M8GXZGaMzRin_alo7zDjlkrJcyg_ZhCmmpoLy4uP7zH58yj6HsKOUaS3kJPu98M56HEzdA1lvwSC58S2QOzQutGMDGIhFP5AVmPbPy-sSAcj3Dn556KGJ2DVkAWiGPXoTO7cJ38jckWvn_GPaH4Hc9xFN8C5R1r4fY-cdSZFkPdYD4AZaso44NnFE05MrMH3cphtcFz0mu5PsyJo-wOlfPM7ulxd3i6vp6vbyejFfTRuuuZxKxnmpSyakrFmbc9WA0gJ4aVVOG50zntu6tYWWefpb2UKJmglmBReFBqbEcfbl4PuA_ucIIVY7P6JLkZWgJeVM6YIn1uzAatCHgGCrB-wGg88Vo9W-hWrfQvXeQhKUB8FT18Pzf9jV_Hx580_7Btnbjgw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yin, Jie</creator><creator>Wong, Voon‐Kean</creator><creator>Xu, Qinwen</creator><creator>Subhodayam, Percis Teena Christopher</creator><creator>Yousry, Yasmin Mohamed</creator><creator>Shashidhara, Acharya</creator><creator>Zhou, Jie</creator><creator>Luo, Ping</creator><creator>Lim, Poh Chong</creator><creator>Wei, FengXia</creator><creator>Lim, David Boon Kiang</creator><creator>Sun, Chengliang</creator><creator>Yao, Kui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0480-9547</orcidid><orcidid>https://orcid.org/0000-0002-9024-6324</orcidid><orcidid>https://orcid.org/0000-0001-5875-4815</orcidid><orcidid>https://orcid.org/0000-0002-4329-0285</orcidid></search><sort><creationdate>20240801</creationdate><title>Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring</title><author>Yin, Jie ; Wong, Voon‐Kean ; Xu, Qinwen ; Subhodayam, Percis Teena Christopher ; Yousry, Yasmin Mohamed ; Shashidhara, Acharya ; Zhou, Jie ; Luo, Ping ; Lim, Poh Chong ; Wei, FengXia ; Lim, David Boon Kiang ; Sun, Chengliang ; Yao, Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-41229791344b1d526ce673e29f650c75125fbdf87457346f863b131f32387e163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic coupling</topic><topic>Ceramic coatings</topic><topic>Ceramic glazes</topic><topic>Effectiveness</topic><topic>Frequency ranges</topic><topic>lead‐free piezoelectric ceramics</topic><topic>Lithium</topic><topic>Piezoelectric ceramics</topic><topic>Protective coatings</topic><topic>Shear</topic><topic>shear mode ultrasonic transducers</topic><topic>Structural health monitoring</topic><topic>thermal sprayed coatings</topic><topic>Transducers</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic transducers</topic><topic>Underground structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Wong, Voon‐Kean</creatorcontrib><creatorcontrib>Xu, Qinwen</creatorcontrib><creatorcontrib>Subhodayam, Percis Teena Christopher</creatorcontrib><creatorcontrib>Yousry, Yasmin Mohamed</creatorcontrib><creatorcontrib>Shashidhara, Acharya</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Lim, Poh Chong</creatorcontrib><creatorcontrib>Wei, FengXia</creatorcontrib><creatorcontrib>Lim, David Boon Kiang</creatorcontrib><creatorcontrib>Sun, Chengliang</creatorcontrib><creatorcontrib>Yao, Kui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Jie</au><au>Wong, Voon‐Kean</au><au>Xu, Qinwen</au><au>Subhodayam, Percis Teena Christopher</au><au>Yousry, Yasmin Mohamed</au><au>Shashidhara, Acharya</au><au>Zhou, Jie</au><au>Luo, Ping</au><au>Lim, Poh Chong</au><au>Wei, FengXia</au><au>Lim, David Boon Kiang</au><au>Sun, Chengliang</au><au>Yao, Kui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring</atitle><jtitle>Advanced functional materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Shear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.
Direct‐write conformable shear mode ultrasonic transducers are designed and produced from lead‐free piezoelectric potassium sodium niobate (KNN) ceramic coatings. These coating transducers ensure consistent, non‐dispersive shear wave transmission and stable ultrasonic signals across various temperatures and underwater conditions. Such reliability and robustness highlight their potential for monitoring the health of submerged or subterranean structures, especially in harsh environments.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401544</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0480-9547</orcidid><orcidid>https://orcid.org/0000-0002-9024-6324</orcidid><orcidid>https://orcid.org/0000-0001-5875-4815</orcidid><orcidid>https://orcid.org/0000-0002-4329-0285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-08, Vol.34 (32), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3090216782 |
source | Access via Wiley Online Library |
subjects | Acoustic coupling Ceramic coatings Ceramic glazes Effectiveness Frequency ranges lead‐free piezoelectric ceramics Lithium Piezoelectric ceramics Protective coatings Shear shear mode ultrasonic transducers Structural health monitoring thermal sprayed coatings Transducers Ultrasonic testing Ultrasonic transducers Underground structures |
title | Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformable%20Shear%20Mode%20Transducers%20from%20Lead%E2%80%90Free%20Piezoelectric%20Ceramic%20Coatings:%20An%20Innovative%20Ultrasonic%20Solution%20for%20Submerged%20Structural%20Health%20Monitoring&rft.jtitle=Advanced%20functional%20materials&rft.au=Yin,%20Jie&rft.date=2024-08-01&rft.volume=34&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401544&rft_dat=%3Cproquest_cross%3E3090216782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090216782&rft_id=info:pmid/&rfr_iscdi=true |