FMDADA: Federated multi-discriminative adversarial domain adaptation
Federated domain adaptation system aims to address the problem of domain shift in a federated learning (FL) framework, where knowledge learned from distributed source domains can be readily transferred to the target domain. However, federated domain adaptation suffers from two challenges: (1) Ineffi...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024-09, Vol.54 (17-18), p.7849-7863 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7863 |
---|---|
container_issue | 17-18 |
container_start_page | 7849 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 54 |
creator | Chi, Hao Xia, Hui Xu, Shuo He, Yusheng Hu, Chunqiang |
description | Federated domain adaptation system aims to address the problem of domain shift in a federated learning (FL) framework, where knowledge learned from distributed source domains can be readily transferred to the target domain. However, federated domain adaptation suffers from two challenges: (1) Inefficient assignment of source domain weights. (2) The joint distributions of feature and category across domains are poorly aligned. To solve the above problems, we propose a novel unsupervised federated domain adaptation (UFDA) approach called Federated Multi-Discriminative Adversarial Domain Adaptation (FMDADA). Firstly, we propose a FL aggregation scheme (F-DIS), which assigns weights to distributed source domains with different contribution rates based on a measure of cross-domain discrepancy. Secondly, we facilitate the joint distribution alignment of feature and category by designing multiple tightly coupled joint classifiers, which facilitates the positive transfer of source domain knowledge. Finally, extensive experimental results on three datasets demonstrate the effectiveness of FMDADA for UFDA problem. Compared to the currently advanced comparison approaches, the accuracy of FMDADA is significantly improved, reaching 54.7% and achieving an improvement of 5.9% on the large-scale dataset DomainNet. |
doi_str_mv | 10.1007/s10489-024-05592-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3090096618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090096618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d822ebbbe226b8220cc926330bb217af8af5a4687db58a1bd062ea875498e2333</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwueo5NkNw9vpbUqVLwoeAvJJisp7W5Ndkv990ZX8OZphvkeM_MhdEngmgCIm0SglAoDLTFUlaL4cIQmpBIMi1KJYzQBlSHO1dspOktpDQCMAZmgxfJpMVvMbouldz6a3rtiO2z6gF1IdQzb0Jo-7H1h3N7HZGIwm8J1WxPaPDK7PqNde45OGrNJ_uK3TtHr8u5l_oBXz_eP89kK11RAj52k1FtrPaXc5h7qWlGe77CWEmEaaZrKlFwKZytpiHXAqTdSVKWSnjLGpuhq9N3F7mPwqdfrbohtXqkZKADFOZGZRUdWHbuUom_0Lj9i4qcmoL_T0mNaOqelf9LShyxioyhlcvvu45_1P6ovKGhtOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090096618</pqid></control><display><type>article</type><title>FMDADA: Federated multi-discriminative adversarial domain adaptation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chi, Hao ; Xia, Hui ; Xu, Shuo ; He, Yusheng ; Hu, Chunqiang</creator><creatorcontrib>Chi, Hao ; Xia, Hui ; Xu, Shuo ; He, Yusheng ; Hu, Chunqiang</creatorcontrib><description>Federated domain adaptation system aims to address the problem of domain shift in a federated learning (FL) framework, where knowledge learned from distributed source domains can be readily transferred to the target domain. However, federated domain adaptation suffers from two challenges: (1) Inefficient assignment of source domain weights. (2) The joint distributions of feature and category across domains are poorly aligned. To solve the above problems, we propose a novel unsupervised federated domain adaptation (UFDA) approach called Federated Multi-Discriminative Adversarial Domain Adaptation (FMDADA). Firstly, we propose a FL aggregation scheme (F-DIS), which assigns weights to distributed source domains with different contribution rates based on a measure of cross-domain discrepancy. Secondly, we facilitate the joint distribution alignment of feature and category by designing multiple tightly coupled joint classifiers, which facilitates the positive transfer of source domain knowledge. Finally, extensive experimental results on three datasets demonstrate the effectiveness of FMDADA for UFDA problem. Compared to the currently advanced comparison approaches, the accuracy of FMDADA is significantly improved, reaching 54.7% and achieving an improvement of 5.9% on the large-scale dataset DomainNet.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-024-05592-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Adaptation ; Algorithms ; Artificial Intelligence ; Computer Science ; Datasets ; Federated learning ; Knowledge management ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Processes</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024-09, Vol.54 (17-18), p.7849-7863</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d822ebbbe226b8220cc926330bb217af8af5a4687db58a1bd062ea875498e2333</cites><orcidid>0000-0001-7326-5796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-024-05592-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-024-05592-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Xu, Shuo</creatorcontrib><creatorcontrib>He, Yusheng</creatorcontrib><creatorcontrib>Hu, Chunqiang</creatorcontrib><title>FMDADA: Federated multi-discriminative adversarial domain adaptation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Federated domain adaptation system aims to address the problem of domain shift in a federated learning (FL) framework, where knowledge learned from distributed source domains can be readily transferred to the target domain. However, federated domain adaptation suffers from two challenges: (1) Inefficient assignment of source domain weights. (2) The joint distributions of feature and category across domains are poorly aligned. To solve the above problems, we propose a novel unsupervised federated domain adaptation (UFDA) approach called Federated Multi-Discriminative Adversarial Domain Adaptation (FMDADA). Firstly, we propose a FL aggregation scheme (F-DIS), which assigns weights to distributed source domains with different contribution rates based on a measure of cross-domain discrepancy. Secondly, we facilitate the joint distribution alignment of feature and category by designing multiple tightly coupled joint classifiers, which facilitates the positive transfer of source domain knowledge. Finally, extensive experimental results on three datasets demonstrate the effectiveness of FMDADA for UFDA problem. Compared to the currently advanced comparison approaches, the accuracy of FMDADA is significantly improved, reaching 54.7% and achieving an improvement of 5.9% on the large-scale dataset DomainNet.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>Knowledge management</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgrf4BTwueo5NkNw9vpbUqVLwoeAvJJisp7W5Ndkv990ZX8OZphvkeM_MhdEngmgCIm0SglAoDLTFUlaL4cIQmpBIMi1KJYzQBlSHO1dspOktpDQCMAZmgxfJpMVvMbouldz6a3rtiO2z6gF1IdQzb0Jo-7H1h3N7HZGIwm8J1WxPaPDK7PqNde45OGrNJ_uK3TtHr8u5l_oBXz_eP89kK11RAj52k1FtrPaXc5h7qWlGe77CWEmEaaZrKlFwKZytpiHXAqTdSVKWSnjLGpuhq9N3F7mPwqdfrbohtXqkZKADFOZGZRUdWHbuUom_0Lj9i4qcmoL_T0mNaOqelf9LShyxioyhlcvvu45_1P6ovKGhtOg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Chi, Hao</creator><creator>Xia, Hui</creator><creator>Xu, Shuo</creator><creator>He, Yusheng</creator><creator>Hu, Chunqiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7326-5796</orcidid></search><sort><creationdate>20240901</creationdate><title>FMDADA: Federated multi-discriminative adversarial domain adaptation</title><author>Chi, Hao ; Xia, Hui ; Xu, Shuo ; He, Yusheng ; Hu, Chunqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d822ebbbe226b8220cc926330bb217af8af5a4687db58a1bd062ea875498e2333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>Knowledge management</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Xu, Shuo</creatorcontrib><creatorcontrib>He, Yusheng</creatorcontrib><creatorcontrib>Hu, Chunqiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Hao</au><au>Xia, Hui</au><au>Xu, Shuo</au><au>He, Yusheng</au><au>Hu, Chunqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMDADA: Federated multi-discriminative adversarial domain adaptation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>54</volume><issue>17-18</issue><spage>7849</spage><epage>7863</epage><pages>7849-7863</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Federated domain adaptation system aims to address the problem of domain shift in a federated learning (FL) framework, where knowledge learned from distributed source domains can be readily transferred to the target domain. However, federated domain adaptation suffers from two challenges: (1) Inefficient assignment of source domain weights. (2) The joint distributions of feature and category across domains are poorly aligned. To solve the above problems, we propose a novel unsupervised federated domain adaptation (UFDA) approach called Federated Multi-Discriminative Adversarial Domain Adaptation (FMDADA). Firstly, we propose a FL aggregation scheme (F-DIS), which assigns weights to distributed source domains with different contribution rates based on a measure of cross-domain discrepancy. Secondly, we facilitate the joint distribution alignment of feature and category by designing multiple tightly coupled joint classifiers, which facilitates the positive transfer of source domain knowledge. Finally, extensive experimental results on three datasets demonstrate the effectiveness of FMDADA for UFDA problem. Compared to the currently advanced comparison approaches, the accuracy of FMDADA is significantly improved, reaching 54.7% and achieving an improvement of 5.9% on the large-scale dataset DomainNet.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-024-05592-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7326-5796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2024-09, Vol.54 (17-18), p.7849-7863 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_3090096618 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Adaptation Algorithms Artificial Intelligence Computer Science Datasets Federated learning Knowledge management Machine learning Machines Manufacturing Mechanical Engineering Processes |
title | FMDADA: Federated multi-discriminative adversarial domain adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMDADA:%20Federated%20multi-discriminative%20adversarial%20domain%20adaptation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Chi,%20Hao&rft.date=2024-09-01&rft.volume=54&rft.issue=17-18&rft.spage=7849&rft.epage=7863&rft.pages=7849-7863&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-024-05592-x&rft_dat=%3Cproquest_cross%3E3090096618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090096618&rft_id=info:pmid/&rfr_iscdi=true |