Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation

Information asymmetry between the Distribution System Operator (DSO) and Distributed Energy Resource Aggregators (DERAs) obstructs designing effective incentives for voltage regulation. To capture this effect, we employ a Stackelberg game-theoretic framework, where the DSO seeks to overcome the info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Liang, Zhirui, Li, Qi, Comden, Joshua, Bernstein, Andrey, Dvorkin, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liang, Zhirui
Li, Qi
Comden, Joshua
Bernstein, Andrey
Dvorkin, Yury
description Information asymmetry between the Distribution System Operator (DSO) and Distributed Energy Resource Aggregators (DERAs) obstructs designing effective incentives for voltage regulation. To capture this effect, we employ a Stackelberg game-theoretic framework, where the DSO seeks to overcome the information asymmetry and refine its incentive strategies by learning from DERA behavior over multiple iterations. We introduce a model-based online learning algorithm for the DSO, aimed at inferring the relationship between incentives and DERA responses. Given the uncertain nature of these responses, we also propose a distributionally robust incentive design model to control the probability of voltage regulation failure and then reformulate it into a convex problem. This model allows the DSO to periodically revise distribution assumptions on uncertain parameters in the decision model of the DERA. Finally, we present a gradient-based method that permits the DSO to adaptively modify its conservativeness level, measured by the size of a Wasserstein metric-based ambiguity set, according to historical voltage regulation performance. The effectiveness of our proposed method is demonstrated through numerical experiments.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3090035501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090035501</sourcerecordid><originalsourceid>FETCH-proquest_journals_30900355013</originalsourceid><addsrcrecordid>eNqNjUsKAjEQRIMgKOodGlwLMXH87cQPCoIg4naI2jNmiImmE0VPrw4ewFVRxauqCqsLKbudYU-IGmsRFZxz0R-IJJF19lyj8lbbHB46nGFyUteg7whTZwn9XX2NRSLInIeZpuD1IQbtrDLmCVt3iBRg8-lc9Et98zGs7BFtOTJD0rktq3tngsoRtphHU4JNVs2UIWz9tMHai_luuuxcvbtFpJAWLvrPD6WSjziXScK78j_qDZ-3T2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090035501</pqid></control><display><type>article</type><title>Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation</title><source>Free E- Journals</source><creator>Liang, Zhirui ; Li, Qi ; Comden, Joshua ; Bernstein, Andrey ; Dvorkin, Yury</creator><creatorcontrib>Liang, Zhirui ; Li, Qi ; Comden, Joshua ; Bernstein, Andrey ; Dvorkin, Yury</creatorcontrib><description>Information asymmetry between the Distribution System Operator (DSO) and Distributed Energy Resource Aggregators (DERAs) obstructs designing effective incentives for voltage regulation. To capture this effect, we employ a Stackelberg game-theoretic framework, where the DSO seeks to overcome the information asymmetry and refine its incentive strategies by learning from DERA behavior over multiple iterations. We introduce a model-based online learning algorithm for the DSO, aimed at inferring the relationship between incentives and DERA responses. Given the uncertain nature of these responses, we also propose a distributionally robust incentive design model to control the probability of voltage regulation failure and then reformulate it into a convex problem. This model allows the DSO to periodically revise distribution assumptions on uncertain parameters in the decision model of the DERA. Finally, we present a gradient-based method that permits the DSO to adaptively modify its conservativeness level, measured by the size of a Wasserstein metric-based ambiguity set, according to historical voltage regulation performance. The effectiveness of our proposed method is demonstrated through numerical experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive systems ; Algorithms ; Design optimization ; Design parameters ; Distance learning ; Effectiveness ; Electric potential ; Energy distribution ; Energy sources ; Game theory ; Incentives ; Machine learning ; Parameter modification ; Parameter robustness ; Parameter uncertainty ; Robust control ; Voltage</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Liang, Zhirui</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Comden, Joshua</creatorcontrib><creatorcontrib>Bernstein, Andrey</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><title>Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation</title><title>arXiv.org</title><description>Information asymmetry between the Distribution System Operator (DSO) and Distributed Energy Resource Aggregators (DERAs) obstructs designing effective incentives for voltage regulation. To capture this effect, we employ a Stackelberg game-theoretic framework, where the DSO seeks to overcome the information asymmetry and refine its incentive strategies by learning from DERA behavior over multiple iterations. We introduce a model-based online learning algorithm for the DSO, aimed at inferring the relationship between incentives and DERA responses. Given the uncertain nature of these responses, we also propose a distributionally robust incentive design model to control the probability of voltage regulation failure and then reformulate it into a convex problem. This model allows the DSO to periodically revise distribution assumptions on uncertain parameters in the decision model of the DERA. Finally, we present a gradient-based method that permits the DSO to adaptively modify its conservativeness level, measured by the size of a Wasserstein metric-based ambiguity set, according to historical voltage regulation performance. The effectiveness of our proposed method is demonstrated through numerical experiments.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Distance learning</subject><subject>Effectiveness</subject><subject>Electric potential</subject><subject>Energy distribution</subject><subject>Energy sources</subject><subject>Game theory</subject><subject>Incentives</subject><subject>Machine learning</subject><subject>Parameter modification</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Robust control</subject><subject>Voltage</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKAjEQRIMgKOodGlwLMXH87cQPCoIg4naI2jNmiImmE0VPrw4ewFVRxauqCqsLKbudYU-IGmsRFZxz0R-IJJF19lyj8lbbHB46nGFyUteg7whTZwn9XX2NRSLInIeZpuD1IQbtrDLmCVt3iBRg8-lc9Et98zGs7BFtOTJD0rktq3tngsoRtphHU4JNVs2UIWz9tMHai_luuuxcvbtFpJAWLvrPD6WSjziXScK78j_qDZ-3T2k</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Liang, Zhirui</creator><creator>Li, Qi</creator><creator>Comden, Joshua</creator><creator>Bernstein, Andrey</creator><creator>Dvorkin, Yury</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240805</creationdate><title>Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation</title><author>Liang, Zhirui ; Li, Qi ; Comden, Joshua ; Bernstein, Andrey ; Dvorkin, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30900355013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Distance learning</topic><topic>Effectiveness</topic><topic>Electric potential</topic><topic>Energy distribution</topic><topic>Energy sources</topic><topic>Game theory</topic><topic>Incentives</topic><topic>Machine learning</topic><topic>Parameter modification</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Robust control</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhirui</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Comden, Joshua</creatorcontrib><creatorcontrib>Bernstein, Andrey</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhirui</au><au>Li, Qi</au><au>Comden, Joshua</au><au>Bernstein, Andrey</au><au>Dvorkin, Yury</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation</atitle><jtitle>arXiv.org</jtitle><date>2024-08-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Information asymmetry between the Distribution System Operator (DSO) and Distributed Energy Resource Aggregators (DERAs) obstructs designing effective incentives for voltage regulation. To capture this effect, we employ a Stackelberg game-theoretic framework, where the DSO seeks to overcome the information asymmetry and refine its incentive strategies by learning from DERA behavior over multiple iterations. We introduce a model-based online learning algorithm for the DSO, aimed at inferring the relationship between incentives and DERA responses. Given the uncertain nature of these responses, we also propose a distributionally robust incentive design model to control the probability of voltage regulation failure and then reformulate it into a convex problem. This model allows the DSO to periodically revise distribution assumptions on uncertain parameters in the decision model of the DERA. Finally, we present a gradient-based method that permits the DSO to adaptively modify its conservativeness level, measured by the size of a Wasserstein metric-based ambiguity set, according to historical voltage regulation performance. The effectiveness of our proposed method is demonstrated through numerical experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3090035501
source Free E- Journals
subjects Adaptive systems
Algorithms
Design optimization
Design parameters
Distance learning
Effectiveness
Electric potential
Energy distribution
Energy sources
Game theory
Incentives
Machine learning
Parameter modification
Parameter robustness
Parameter uncertainty
Robust control
Voltage
title Learning with Adaptive Conservativeness for Distributionally Robust Optimization: Incentive Design for Voltage Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20with%20Adaptive%20Conservativeness%20for%20Distributionally%20Robust%20Optimization:%20Incentive%20Design%20for%20Voltage%20Regulation&rft.jtitle=arXiv.org&rft.au=Liang,%20Zhirui&rft.date=2024-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3090035501%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090035501&rft_id=info:pmid/&rfr_iscdi=true