Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities

In this paper, we address rare-event simulation for heavy-tailed Lévy processes with infinite activities. The presence of infinite activities poses a critical challenge, making it impractical to simulate or store the precise sample path of the Lévy process. We present a rare-event simulation algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Wang, Xingyu, Chang-Han, Rhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Xingyu
Chang-Han, Rhee
description In this paper, we address rare-event simulation for heavy-tailed Lévy processes with infinite activities. The presence of infinite activities poses a critical challenge, making it impractical to simulate or store the precise sample path of the Lévy process. We present a rare-event simulation algorithm that incorporates an importance sampling strategy based on heavy-tailed large deviations, the stick-breaking approximation for the extrema of Lévy processes, the Asmussen-Rosiński approximation, and the randomized debiasing technique. By establishing a novel characterization for the Lipschitz continuity of the law of Lévy processes, we show that the proposed algorithm is unbiased and strongly efficient under mild conditions, and hence applicable to a broad class of Lévy processes. In numerical experiments, our algorithm demonstrates significant improvements in efficiency compared to the crude Monte-Carlo approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3090019109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090019109</sourcerecordid><originalsourceid>FETCH-proquest_journals_30900191093</originalsourceid><addsrcrecordid>eNqNiksKwjAURYMgWLR7eOC4kCb-OhSpKDgQFadSykt9pSaapJUuyXW4MSu4AEfnHu7psUBIGUeLiRADFjpXcs7FbC6mUxmw4uit0UXVQqoU5YTawyGzGKXNdx7pVleZJ6NBGQsHLDq1XX3ObEu6gN371bSwtyZH59DBk_wVtlqRJo-wzD015AndiPVVVjkMfxyy8To9rTbR3ZpHjc5fSlNb3V0XyRPO4yTmifyv-gCimkic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090019109</pqid></control><display><type>article</type><title>Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities</title><source>Free E- Journals</source><creator>Wang, Xingyu ; Chang-Han, Rhee</creator><creatorcontrib>Wang, Xingyu ; Chang-Han, Rhee</creatorcontrib><description>In this paper, we address rare-event simulation for heavy-tailed Lévy processes with infinite activities. The presence of infinite activities poses a critical challenge, making it impractical to simulate or store the precise sample path of the Lévy process. We present a rare-event simulation algorithm that incorporates an importance sampling strategy based on heavy-tailed large deviations, the stick-breaking approximation for the extrema of Lévy processes, the Asmussen-Rosiński approximation, and the randomized debiasing technique. By establishing a novel characterization for the Lipschitz continuity of the law of Lévy processes, we show that the proposed algorithm is unbiased and strongly efficient under mild conditions, and hence applicable to a broad class of Lévy processes. In numerical experiments, our algorithm demonstrates significant improvements in efficiency compared to the crude Monte-Carlo approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Importance sampling ; Lipschitz condition ; Stochastic processes</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Chang-Han, Rhee</creatorcontrib><title>Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities</title><title>arXiv.org</title><description>In this paper, we address rare-event simulation for heavy-tailed Lévy processes with infinite activities. The presence of infinite activities poses a critical challenge, making it impractical to simulate or store the precise sample path of the Lévy process. We present a rare-event simulation algorithm that incorporates an importance sampling strategy based on heavy-tailed large deviations, the stick-breaking approximation for the extrema of Lévy processes, the Asmussen-Rosiński approximation, and the randomized debiasing technique. By establishing a novel characterization for the Lipschitz continuity of the law of Lévy processes, we show that the proposed algorithm is unbiased and strongly efficient under mild conditions, and hence applicable to a broad class of Lévy processes. In numerical experiments, our algorithm demonstrates significant improvements in efficiency compared to the crude Monte-Carlo approach.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Importance sampling</subject><subject>Lipschitz condition</subject><subject>Stochastic processes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAURYMgWLR7eOC4kCb-OhSpKDgQFadSykt9pSaapJUuyXW4MSu4AEfnHu7psUBIGUeLiRADFjpXcs7FbC6mUxmw4uit0UXVQqoU5YTawyGzGKXNdx7pVleZJ6NBGQsHLDq1XX3ObEu6gN371bSwtyZH59DBk_wVtlqRJo-wzD015AndiPVVVjkMfxyy8To9rTbR3ZpHjc5fSlNb3V0XyRPO4yTmifyv-gCimkic</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Wang, Xingyu</creator><creator>Chang-Han, Rhee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240806</creationdate><title>Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities</title><author>Wang, Xingyu ; Chang-Han, Rhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30900191093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Importance sampling</topic><topic>Lipschitz condition</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Chang-Han, Rhee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xingyu</au><au>Chang-Han, Rhee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities</atitle><jtitle>arXiv.org</jtitle><date>2024-08-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we address rare-event simulation for heavy-tailed Lévy processes with infinite activities. The presence of infinite activities poses a critical challenge, making it impractical to simulate or store the precise sample path of the Lévy process. We present a rare-event simulation algorithm that incorporates an importance sampling strategy based on heavy-tailed large deviations, the stick-breaking approximation for the extrema of Lévy processes, the Asmussen-Rosiński approximation, and the randomized debiasing technique. By establishing a novel characterization for the Lipschitz continuity of the law of Lévy processes, we show that the proposed algorithm is unbiased and strongly efficient under mild conditions, and hence applicable to a broad class of Lévy processes. In numerical experiments, our algorithm demonstrates significant improvements in efficiency compared to the crude Monte-Carlo approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3090019109
source Free E- Journals
subjects Algorithms
Approximation
Importance sampling
Lipschitz condition
Stochastic processes
title Strongly Efficient Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Strongly%20Efficient%20Rare-Event%20Simulation%20for%20Regularly%20Varying%20L%C3%A9vy%20Processes%20with%20Infinite%20Activities&rft.jtitle=arXiv.org&rft.au=Wang,%20Xingyu&rft.date=2024-08-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3090019109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090019109&rft_id=info:pmid/&rfr_iscdi=true