Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review

We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Umar, Muhammad Abdullah, Raja, Gulistan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3125
creator Umar, Muhammad Abdullah
Raja, Gulistan
description We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.
doi_str_mv 10.1063/5.0214455
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3089946030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089946030</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-48c829136db499f0a7334c0e46f4163d2d19a82f363bceb66c209c0fe0a650aa3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1zeduvC31Ewqi9OAtZLNZm2I3a5JW-u9daS8zl2dmYBC6JjAjINmdmAElnAtxgiZECFKUkshTNAFQvKCcfZ6ji5TWAFSVZTVB7_OwGbbZxaL2rWtx681XH5JPOO1TdpuEuxDxgzeNy97ij1H7MJi82t_jGtsxHN3K9cnvHI5u593vJTrrzHdyV0efouXT43L-Uizenl_n9aIYJBMFr2xFFWGybbhSHZiSMW7BcdlxIllLW6JMRTsmWWNdI6WloCx0DowUYAyboptD7RDDz9alrNdhG_txUTOolOISGIzU7YFK1meTfej1EP3GxL0moP8f00IfH2N_b-9dMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3089946030</pqid></control><display><type>conference_proceeding</type><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><source>AIP Journals Complete</source><creator>Umar, Muhammad Abdullah ; Raja, Gulistan</creator><contributor>Ahad, Inam Ul ; Gaidan, Ibrahim ; Syed, Ali Akbar Shah</contributor><creatorcontrib>Umar, Muhammad Abdullah ; Raja, Gulistan ; Ahad, Inam Ul ; Gaidan, Ibrahim ; Syed, Ali Akbar Shah</creatorcontrib><description>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0214455</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Datasets ; Deep learning ; Machine learning ; Performance evaluation ; Retinal images</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3125 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0214455$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ahad, Inam Ul</contributor><contributor>Gaidan, Ibrahim</contributor><contributor>Syed, Ali Akbar Shah</contributor><creatorcontrib>Umar, Muhammad Abdullah</creatorcontrib><creatorcontrib>Raja, Gulistan</creatorcontrib><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><title>AIP Conference Proceedings</title><description>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</description><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Retinal images</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1zeduvC31Ewqi9OAtZLNZm2I3a5JW-u9daS8zl2dmYBC6JjAjINmdmAElnAtxgiZECFKUkshTNAFQvKCcfZ6ji5TWAFSVZTVB7_OwGbbZxaL2rWtx681XH5JPOO1TdpuEuxDxgzeNy97ij1H7MJi82t_jGtsxHN3K9cnvHI5u593vJTrrzHdyV0efouXT43L-Uizenl_n9aIYJBMFr2xFFWGybbhSHZiSMW7BcdlxIllLW6JMRTsmWWNdI6WloCx0DowUYAyboptD7RDDz9alrNdhG_txUTOolOISGIzU7YFK1meTfej1EP3GxL0moP8f00IfH2N_b-9dMw</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Umar, Muhammad Abdullah</creator><creator>Raja, Gulistan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240807</creationdate><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><author>Umar, Muhammad Abdullah ; Raja, Gulistan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-48c829136db499f0a7334c0e46f4163d2d19a82f363bceb66c209c0fe0a650aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Retinal images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umar, Muhammad Abdullah</creatorcontrib><creatorcontrib>Raja, Gulistan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umar, Muhammad Abdullah</au><au>Raja, Gulistan</au><au>Ahad, Inam Ul</au><au>Gaidan, Ibrahim</au><au>Syed, Ali Akbar Shah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-08-07</date><risdate>2024</risdate><volume>3125</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214455</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3125 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3089946030
source AIP Journals Complete
subjects Classification
Datasets
Deep learning
Machine learning
Performance evaluation
Retinal images
title Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computer-Aided%20diagnosis%20systems%20for%20Diabetic%20Retinopathy:%20A%20comprehensive%20review&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Umar,%20Muhammad%20Abdullah&rft.date=2024-08-07&rft.volume=3125&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0214455&rft_dat=%3Cproquest_scita%3E3089946030%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089946030&rft_id=info:pmid/&rfr_iscdi=true