Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review
We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3125 |
creator | Umar, Muhammad Abdullah Raja, Gulistan |
description | We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset. |
doi_str_mv | 10.1063/5.0214455 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3089946030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089946030</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-48c829136db499f0a7334c0e46f4163d2d19a82f363bceb66c209c0fe0a650aa3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1zeduvC31Ewqi9OAtZLNZm2I3a5JW-u9daS8zl2dmYBC6JjAjINmdmAElnAtxgiZECFKUkshTNAFQvKCcfZ6ji5TWAFSVZTVB7_OwGbbZxaL2rWtx681XH5JPOO1TdpuEuxDxgzeNy97ij1H7MJi82t_jGtsxHN3K9cnvHI5u593vJTrrzHdyV0efouXT43L-Uizenl_n9aIYJBMFr2xFFWGybbhSHZiSMW7BcdlxIllLW6JMRTsmWWNdI6WloCx0DowUYAyboptD7RDDz9alrNdhG_txUTOolOISGIzU7YFK1meTfej1EP3GxL0moP8f00IfH2N_b-9dMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3089946030</pqid></control><display><type>conference_proceeding</type><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><source>AIP Journals Complete</source><creator>Umar, Muhammad Abdullah ; Raja, Gulistan</creator><contributor>Ahad, Inam Ul ; Gaidan, Ibrahim ; Syed, Ali Akbar Shah</contributor><creatorcontrib>Umar, Muhammad Abdullah ; Raja, Gulistan ; Ahad, Inam Ul ; Gaidan, Ibrahim ; Syed, Ali Akbar Shah</creatorcontrib><description>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0214455</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Datasets ; Deep learning ; Machine learning ; Performance evaluation ; Retinal images</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3125 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0214455$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ahad, Inam Ul</contributor><contributor>Gaidan, Ibrahim</contributor><contributor>Syed, Ali Akbar Shah</contributor><creatorcontrib>Umar, Muhammad Abdullah</creatorcontrib><creatorcontrib>Raja, Gulistan</creatorcontrib><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><title>AIP Conference Proceedings</title><description>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</description><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Retinal images</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7D1zeduvC31Ewqi9OAtZLNZm2I3a5JW-u9daS8zl2dmYBC6JjAjINmdmAElnAtxgiZECFKUkshTNAFQvKCcfZ6ji5TWAFSVZTVB7_OwGbbZxaL2rWtx681XH5JPOO1TdpuEuxDxgzeNy97ij1H7MJi82t_jGtsxHN3K9cnvHI5u593vJTrrzHdyV0efouXT43L-Uizenl_n9aIYJBMFr2xFFWGybbhSHZiSMW7BcdlxIllLW6JMRTsmWWNdI6WloCx0DowUYAyboptD7RDDz9alrNdhG_txUTOolOISGIzU7YFK1meTfej1EP3GxL0moP8f00IfH2N_b-9dMw</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Umar, Muhammad Abdullah</creator><creator>Raja, Gulistan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240807</creationdate><title>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</title><author>Umar, Muhammad Abdullah ; Raja, Gulistan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-48c829136db499f0a7334c0e46f4163d2d19a82f363bceb66c209c0fe0a650aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Retinal images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umar, Muhammad Abdullah</creatorcontrib><creatorcontrib>Raja, Gulistan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umar, Muhammad Abdullah</au><au>Raja, Gulistan</au><au>Ahad, Inam Ul</au><au>Gaidan, Ibrahim</au><au>Syed, Ali Akbar Shah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-08-07</date><risdate>2024</risdate><volume>3125</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We present a systematic review of prominent methods for computer-aided detection of Diabetic Retinopathy (DR). We evaluated the recent methods for DR lesion detection with study of validation dataset types, number of training samples in dataset, sample resolution, performance in terms of accuracy and techniques for classification. Our review reflects that most of the current automated DR detection systems have been validated on datasets with very small number of retinal images. Moreover, it is found that the machine learning (ML) / deep learning (DL) DR detection methods have achieved the classification accuracy up to 100% therefore demonstration of superior performance in terms of accuracy improvement has limited scope. Some DR grading methods have reported accuracy up to 100% however they have limitation in terms of generalization ability as they have been validated on single dataset.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214455</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3125 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3089946030 |
source | AIP Journals Complete |
subjects | Classification Datasets Deep learning Machine learning Performance evaluation Retinal images |
title | Computer-Aided diagnosis systems for Diabetic Retinopathy: A comprehensive review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computer-Aided%20diagnosis%20systems%20for%20Diabetic%20Retinopathy:%20A%20comprehensive%20review&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Umar,%20Muhammad%20Abdullah&rft.date=2024-08-07&rft.volume=3125&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0214455&rft_dat=%3Cproquest_scita%3E3089946030%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089946030&rft_id=info:pmid/&rfr_iscdi=true |