Attention-based supervised contrastive learning on fine-grained image classification

To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2024-09, Vol.27 (3), Article 96
Hauptverfasser: Li, Qian, Wu, Weining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Pattern analysis and applications : PAA
container_volume 27
creator Li, Qian
Wu, Weining
description To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1007/s10044-024-01317-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089862192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089862192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4978bf8c19f830c8a5efd0959d7fa8fd484724ed3c67667964cfcf8084b814e73</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwueo8kmu0mOpfgFBS8VvIU0-7Kk1GxNsgX_vakrevPw3sxhZt5jELqm5JYSIu5S2ZxjUpehjArcnKAZ5Yxh0TRvp7-c03N0kdKWEMZYLWdovcgZQvZDwBuToKvSuId48Edqh5CjSdkfoNqBicGHvhpC5XwA3EdToKv8u-mhsjuTknfemmPUJTpzZpfg6gfn6PXhfr18wquXx-flYoVtTUjGXAm5cdJS5SQjVpoGXEdUozrhjHQdl1zUHDpmW9G2QrXcOuskkXwjKQfB5uhmyt3H4WOElPV2GGMoJzUjUsm2pqouqnpS2TikFMHpfSxfx09NiT62p6f2dGlPf7enm2JikykVcegh_kX_4_oCZKZzWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089862192</pqid></control><display><type>article</type><title>Attention-based supervised contrastive learning on fine-grained image classification</title><source>SpringerLink Journals</source><creator>Li, Qian ; Wu, Weining</creator><creatorcontrib>Li, Qian ; Wu, Weining</creatorcontrib><description>To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-024-01317-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Science ; Entropy (Information theory) ; Image classification ; Pattern Recognition ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2024-09, Vol.27 (3), Article 96</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4978bf8c19f830c8a5efd0959d7fa8fd484724ed3c67667964cfcf8084b814e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-024-01317-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-024-01317-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Wu, Weining</creatorcontrib><title>Attention-based supervised contrastive learning on fine-grained image classification</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Entropy (Information theory)</subject><subject>Image classification</subject><subject>Pattern Recognition</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwueo8kmu0mOpfgFBS8VvIU0-7Kk1GxNsgX_vakrevPw3sxhZt5jELqm5JYSIu5S2ZxjUpehjArcnKAZ5Yxh0TRvp7-c03N0kdKWEMZYLWdovcgZQvZDwBuToKvSuId48Edqh5CjSdkfoNqBicGHvhpC5XwA3EdToKv8u-mhsjuTknfemmPUJTpzZpfg6gfn6PXhfr18wquXx-flYoVtTUjGXAm5cdJS5SQjVpoGXEdUozrhjHQdl1zUHDpmW9G2QrXcOuskkXwjKQfB5uhmyt3H4WOElPV2GGMoJzUjUsm2pqouqnpS2TikFMHpfSxfx09NiT62p6f2dGlPf7enm2JikykVcegh_kX_4_oCZKZzWw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Li, Qian</creator><creator>Wu, Weining</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Attention-based supervised contrastive learning on fine-grained image classification</title><author>Li, Qian ; Wu, Weining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4978bf8c19f830c8a5efd0959d7fa8fd484724ed3c67667964cfcf8084b814e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Entropy (Information theory)</topic><topic>Image classification</topic><topic>Pattern Recognition</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Wu, Weining</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Wu, Weining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-based supervised contrastive learning on fine-grained image classification</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><artnum>96</artnum><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-024-01317-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2024-09, Vol.27 (3), Article 96
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_3089862192
source SpringerLink Journals
subjects Algorithms
Computer Science
Entropy (Information theory)
Image classification
Pattern Recognition
Theoretical Advances
title Attention-based supervised contrastive learning on fine-grained image classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-based%20supervised%20contrastive%20learning%20on%20fine-grained%20image%20classification&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Li,%20Qian&rft.date=2024-09-01&rft.volume=27&rft.issue=3&rft.artnum=96&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-024-01317-5&rft_dat=%3Cproquest_cross%3E3089862192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089862192&rft_id=info:pmid/&rfr_iscdi=true