Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction
Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichamber...
Gespeichert in:
Veröffentlicht in: | Aggregate (Hoboken) 2021-04, Vol.2 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Aggregate (Hoboken) |
container_volume | 2 |
creator | Li, Mingzhong Deng, Yuwei Wu, Guanhong Xue, Shuqing Yan, Yancui Liu, Zihan Zou, Jinxiang Yang, Dong Dong, Angang |
description | Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting.
Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte. |
doi_str_mv | 10.1002/agt2.17 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3089861940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089861940</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2197-fe5d3fd628ff68ed9ebb93e573e6191b199e0e284204b4efd49b0991f8db1caf3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURgdRsNTiKwRc6oxJJvOTZSlahWo3dR2SyU2bMp2MmQy14MJH8Bl9EqfUhav73cvhXPii6JrghGBM7-U60IQUZ9GI5pzGLMvx-b98GU26bosHMiMpyfAo-nzp62B_vr6rjdwp8KDvUCW9cs3x5mQAjV4tTtgj0CRfMtTIxrXSB1vVgLq-BV_LMGyAdrbyrms3g6RDxnmknOuCbdZoP2g8ch9Wy2BdgzzI6hiuogsj6w4mf3McvT0-rGZP8WI5f55NF3FLCS9iA5lOjc5paUxeguagFE8hK1LICSeKcA4YaMkoZoqB0YwrzDkxpVakkiYdRzcnb-vdew9dEFvX-2Z4KVJc8nKwMDxQtydqb2s4iNbbnfQHQbA4ViuO1QpSiOl8RUmR_gI8w3EZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089861940</pqid></control><display><type>article</type><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</creator><creatorcontrib>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</creatorcontrib><description>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting.
Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</description><identifier>ISSN: 2692-4560</identifier><identifier>ISSN: 2766-8541</identifier><identifier>EISSN: 2692-4560</identifier><identifier>DOI: 10.1002/agt2.17</identifier><language>eng</language><publisher>Guangzhou: John Wiley & Sons, Inc</publisher><subject>Alternative energy sources ; Carbon ; carbon coating ; Electrolytes ; Ligands ; Nickel ; OER ; Pore size ; porous electrocatalyst ; self‐assembly ; supraparticle ; Surfactants ; Water</subject><ispartof>Aggregate (Hoboken), 2021-04, Vol.2 (2), p.n/a</ispartof><rights>2021 The Authors. published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9677-8778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fagt2.17$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fagt2.17$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Li, Mingzhong</creatorcontrib><creatorcontrib>Deng, Yuwei</creatorcontrib><creatorcontrib>Wu, Guanhong</creatorcontrib><creatorcontrib>Xue, Shuqing</creatorcontrib><creatorcontrib>Yan, Yancui</creatorcontrib><creatorcontrib>Liu, Zihan</creatorcontrib><creatorcontrib>Zou, Jinxiang</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><title>Aggregate (Hoboken)</title><description>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting.
Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</description><subject>Alternative energy sources</subject><subject>Carbon</subject><subject>carbon coating</subject><subject>Electrolytes</subject><subject>Ligands</subject><subject>Nickel</subject><subject>OER</subject><subject>Pore size</subject><subject>porous electrocatalyst</subject><subject>self‐assembly</subject><subject>supraparticle</subject><subject>Surfactants</subject><subject>Water</subject><issn>2692-4560</issn><issn>2766-8541</issn><issn>2692-4560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEURgdRsNTiKwRc6oxJJvOTZSlahWo3dR2SyU2bMp2MmQy14MJH8Bl9EqfUhav73cvhXPii6JrghGBM7-U60IQUZ9GI5pzGLMvx-b98GU26bosHMiMpyfAo-nzp62B_vr6rjdwp8KDvUCW9cs3x5mQAjV4tTtgj0CRfMtTIxrXSB1vVgLq-BV_LMGyAdrbyrms3g6RDxnmknOuCbdZoP2g8ch9Wy2BdgzzI6hiuogsj6w4mf3McvT0-rGZP8WI5f55NF3FLCS9iA5lOjc5paUxeguagFE8hK1LICSeKcA4YaMkoZoqB0YwrzDkxpVakkiYdRzcnb-vdew9dEFvX-2Z4KVJc8nKwMDxQtydqb2s4iNbbnfQHQbA4ViuO1QpSiOl8RUmR_gI8w3EZ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Li, Mingzhong</creator><creator>Deng, Yuwei</creator><creator>Wu, Guanhong</creator><creator>Xue, Shuqing</creator><creator>Yan, Yancui</creator><creator>Liu, Zihan</creator><creator>Zou, Jinxiang</creator><creator>Yang, Dong</creator><creator>Dong, Angang</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid></search><sort><creationdate>202104</creationdate><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><author>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2197-fe5d3fd628ff68ed9ebb93e573e6191b199e0e284204b4efd49b0991f8db1caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Carbon</topic><topic>carbon coating</topic><topic>Electrolytes</topic><topic>Ligands</topic><topic>Nickel</topic><topic>OER</topic><topic>Pore size</topic><topic>porous electrocatalyst</topic><topic>self‐assembly</topic><topic>supraparticle</topic><topic>Surfactants</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingzhong</creatorcontrib><creatorcontrib>Deng, Yuwei</creatorcontrib><creatorcontrib>Wu, Guanhong</creatorcontrib><creatorcontrib>Xue, Shuqing</creatorcontrib><creatorcontrib>Yan, Yancui</creatorcontrib><creatorcontrib>Liu, Zihan</creatorcontrib><creatorcontrib>Zou, Jinxiang</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Aggregate (Hoboken)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingzhong</au><au>Deng, Yuwei</au><au>Wu, Guanhong</au><au>Xue, Shuqing</au><au>Yan, Yancui</au><au>Liu, Zihan</au><au>Zou, Jinxiang</au><au>Yang, Dong</au><au>Dong, Angang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</atitle><jtitle>Aggregate (Hoboken)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>2</volume><issue>2</issue><epage>n/a</epage><issn>2692-4560</issn><issn>2766-8541</issn><eissn>2692-4560</eissn><abstract>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting.
Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</abstract><cop>Guangzhou</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/agt2.17</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2692-4560 |
ispartof | Aggregate (Hoboken), 2021-04, Vol.2 (2), p.n/a |
issn | 2692-4560 2766-8541 2692-4560 |
language | eng |
recordid | cdi_proquest_journals_3089861940 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Alternative energy sources Carbon carbon coating Electrolytes Ligands Nickel OER Pore size porous electrocatalyst self‐assembly supraparticle Surfactants Water |
title | Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90chambered,%20carbon%E2%80%90coated%20Ni0.4Fe2.6O4%20nanoparticle%20superlattice%20microspheres%20for%20boosting%20water%20oxidation%20reaction&rft.jtitle=Aggregate%20(Hoboken)&rft.au=Li,%20Mingzhong&rft.date=2021-04&rft.volume=2&rft.issue=2&rft.epage=n/a&rft.issn=2692-4560&rft.eissn=2692-4560&rft_id=info:doi/10.1002/agt2.17&rft_dat=%3Cproquest_wiley%3E3089861940%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089861940&rft_id=info:pmid/&rfr_iscdi=true |