Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction

Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichamber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aggregate (Hoboken) 2021-04, Vol.2 (2), p.n/a
Hauptverfasser: Li, Mingzhong, Deng, Yuwei, Wu, Guanhong, Xue, Shuqing, Yan, Yancui, Liu, Zihan, Zou, Jinxiang, Yang, Dong, Dong, Angang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Aggregate (Hoboken)
container_volume 2
creator Li, Mingzhong
Deng, Yuwei
Wu, Guanhong
Xue, Shuqing
Yan, Yancui
Liu, Zihan
Zou, Jinxiang
Yang, Dong
Dong, Angang
description Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting. Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.
doi_str_mv 10.1002/agt2.17
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3089861940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089861940</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2197-fe5d3fd628ff68ed9ebb93e573e6191b199e0e284204b4efd49b0991f8db1caf3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURgdRsNTiKwRc6oxJJvOTZSlahWo3dR2SyU2bMp2MmQy14MJH8Bl9EqfUhav73cvhXPii6JrghGBM7-U60IQUZ9GI5pzGLMvx-b98GU26bosHMiMpyfAo-nzp62B_vr6rjdwp8KDvUCW9cs3x5mQAjV4tTtgj0CRfMtTIxrXSB1vVgLq-BV_LMGyAdrbyrms3g6RDxnmknOuCbdZoP2g8ch9Wy2BdgzzI6hiuogsj6w4mf3McvT0-rGZP8WI5f55NF3FLCS9iA5lOjc5paUxeguagFE8hK1LICSeKcA4YaMkoZoqB0YwrzDkxpVakkiYdRzcnb-vdew9dEFvX-2Z4KVJc8nKwMDxQtydqb2s4iNbbnfQHQbA4ViuO1QpSiOl8RUmR_gI8w3EZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089861940</pqid></control><display><type>article</type><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</creator><creatorcontrib>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</creatorcontrib><description>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting. Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</description><identifier>ISSN: 2692-4560</identifier><identifier>ISSN: 2766-8541</identifier><identifier>EISSN: 2692-4560</identifier><identifier>DOI: 10.1002/agt2.17</identifier><language>eng</language><publisher>Guangzhou: John Wiley &amp; Sons, Inc</publisher><subject>Alternative energy sources ; Carbon ; carbon coating ; Electrolytes ; Ligands ; Nickel ; OER ; Pore size ; porous electrocatalyst ; self‐assembly ; supraparticle ; Surfactants ; Water</subject><ispartof>Aggregate (Hoboken), 2021-04, Vol.2 (2), p.n/a</ispartof><rights>2021 The Authors. published by South China University of Technology; AIE Institute and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9677-8778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fagt2.17$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fagt2.17$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Li, Mingzhong</creatorcontrib><creatorcontrib>Deng, Yuwei</creatorcontrib><creatorcontrib>Wu, Guanhong</creatorcontrib><creatorcontrib>Xue, Shuqing</creatorcontrib><creatorcontrib>Yan, Yancui</creatorcontrib><creatorcontrib>Liu, Zihan</creatorcontrib><creatorcontrib>Zou, Jinxiang</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><title>Aggregate (Hoboken)</title><description>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting. Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</description><subject>Alternative energy sources</subject><subject>Carbon</subject><subject>carbon coating</subject><subject>Electrolytes</subject><subject>Ligands</subject><subject>Nickel</subject><subject>OER</subject><subject>Pore size</subject><subject>porous electrocatalyst</subject><subject>self‐assembly</subject><subject>supraparticle</subject><subject>Surfactants</subject><subject>Water</subject><issn>2692-4560</issn><issn>2766-8541</issn><issn>2692-4560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEURgdRsNTiKwRc6oxJJvOTZSlahWo3dR2SyU2bMp2MmQy14MJH8Bl9EqfUhav73cvhXPii6JrghGBM7-U60IQUZ9GI5pzGLMvx-b98GU26bosHMiMpyfAo-nzp62B_vr6rjdwp8KDvUCW9cs3x5mQAjV4tTtgj0CRfMtTIxrXSB1vVgLq-BV_LMGyAdrbyrms3g6RDxnmknOuCbdZoP2g8ch9Wy2BdgzzI6hiuogsj6w4mf3McvT0-rGZP8WI5f55NF3FLCS9iA5lOjc5paUxeguagFE8hK1LICSeKcA4YaMkoZoqB0YwrzDkxpVakkiYdRzcnb-vdew9dEFvX-2Z4KVJc8nKwMDxQtydqb2s4iNbbnfQHQbA4ViuO1QpSiOl8RUmR_gI8w3EZ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Li, Mingzhong</creator><creator>Deng, Yuwei</creator><creator>Wu, Guanhong</creator><creator>Xue, Shuqing</creator><creator>Yan, Yancui</creator><creator>Liu, Zihan</creator><creator>Zou, Jinxiang</creator><creator>Yang, Dong</creator><creator>Dong, Angang</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid></search><sort><creationdate>202104</creationdate><title>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</title><author>Li, Mingzhong ; Deng, Yuwei ; Wu, Guanhong ; Xue, Shuqing ; Yan, Yancui ; Liu, Zihan ; Zou, Jinxiang ; Yang, Dong ; Dong, Angang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2197-fe5d3fd628ff68ed9ebb93e573e6191b199e0e284204b4efd49b0991f8db1caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Carbon</topic><topic>carbon coating</topic><topic>Electrolytes</topic><topic>Ligands</topic><topic>Nickel</topic><topic>OER</topic><topic>Pore size</topic><topic>porous electrocatalyst</topic><topic>self‐assembly</topic><topic>supraparticle</topic><topic>Surfactants</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingzhong</creatorcontrib><creatorcontrib>Deng, Yuwei</creatorcontrib><creatorcontrib>Wu, Guanhong</creatorcontrib><creatorcontrib>Xue, Shuqing</creatorcontrib><creatorcontrib>Yan, Yancui</creatorcontrib><creatorcontrib>Liu, Zihan</creatorcontrib><creatorcontrib>Zou, Jinxiang</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Dong, Angang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Aggregate (Hoboken)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingzhong</au><au>Deng, Yuwei</au><au>Wu, Guanhong</au><au>Xue, Shuqing</au><au>Yan, Yancui</au><au>Liu, Zihan</au><au>Zou, Jinxiang</au><au>Yang, Dong</au><au>Dong, Angang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction</atitle><jtitle>Aggregate (Hoboken)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>2</volume><issue>2</issue><epage>n/a</epage><issn>2692-4560</issn><issn>2766-8541</issn><eissn>2692-4560</eissn><abstract>Developing active and robust non‐noble‐metal‐based electrocatalysts for the oxygen evolution reaction (OER) is of vital practical significance for accelerating the kinetics of water splitting. Here, a novel double emulsion template method is proposed to design and prepare hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres (M‐NFO@C‐NSMs) for the highly efficient oxygen evolution. The high‐temperature calcination under inert gas enables an improved electrochemical property by rationally transforming the long‐chain organic capping ligands into partially graphitized uniform carbon coatings. More importantly, benefiting from the unique hierarchical superstructure with macro‐/meso‐/microporosities and three‐dimensional continuous conductive carbon frameworks, M‐NFO@C‐NSMs exhibit comprehensively enhanced OER activity in a dilute alkaline electrolyte as compared to their solid counterparts and most spinel‐based electrocatalysts reported to date. Notably, the collective property of supraparticles endowed M‐NFO@C‐NSMs with superior long‐term cyclic stability. This work sheds light on the sophisticated design of functionalized supraparticles for efficient water splitting. Hierarchically multichambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres were successfully fabricated by a double emulsion template method based on bottom‐up self‐assembly of colloidal nanoparticles, followed by calcination. Benefiting from their unique hierarchical superstructure and collective effect, the prepared supraparticles exhibit superior electrocatalytic water oxidation performance in an alkaline electrolyte.</abstract><cop>Guangzhou</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/agt2.17</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9677-8778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2692-4560
ispartof Aggregate (Hoboken), 2021-04, Vol.2 (2), p.n/a
issn 2692-4560
2766-8541
2692-4560
language eng
recordid cdi_proquest_journals_3089861940
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Alternative energy sources
Carbon
carbon coating
Electrolytes
Ligands
Nickel
OER
Pore size
porous electrocatalyst
self‐assembly
supraparticle
Surfactants
Water
title Multi‐chambered, carbon‐coated Ni0.4Fe2.6O4 nanoparticle superlattice microspheres for boosting water oxidation reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90chambered,%20carbon%E2%80%90coated%20Ni0.4Fe2.6O4%20nanoparticle%20superlattice%20microspheres%20for%20boosting%20water%20oxidation%20reaction&rft.jtitle=Aggregate%20(Hoboken)&rft.au=Li,%20Mingzhong&rft.date=2021-04&rft.volume=2&rft.issue=2&rft.epage=n/a&rft.issn=2692-4560&rft.eissn=2692-4560&rft_id=info:doi/10.1002/agt2.17&rft_dat=%3Cproquest_wiley%3E3089861940%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089861940&rft_id=info:pmid/&rfr_iscdi=true