Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization
The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mullick, Ankan Bose, Sombit Saha, Rounak Bhowmick, Ayan Kumar Vempaty, Aditya Goyal, Pawan Ganguly, Niloy Dey, Prasenjit Kokku, Ravi |
description | The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3089691128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089691128</sourcerecordid><originalsourceid>FETCH-proquest_journals_30896911283</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOA60CZ-qrsqiosKit3XoK9txCY1H0VPr4IHcDWLGaZDAsZ5TJMRYz0SWnuJoohNpmw85gE5ZnhHIyqpKnA1wk4_0IAuIcu2dg4prKVCmnv1DdK2NVqcaii1gY2sarr34irdE1Lb4snRhbB4hoNvGmHkSzip1YB0S3G1GP7YJ8P1Kl9u6Gd182hdcdHeqI8qeJTMJrM4Zgn_r3oDGkBDqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089691128</pqid></control><display><type>article</type><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><source>Free E- Journals</source><creator>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</creator><creatorcontrib>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</creatorcontrib><description>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Documents ; Information retrieval ; Large language models ; Natural language processing ; Performance evaluation ; State-of-the-art reviews ; Summaries</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mullick, Ankan</creatorcontrib><creatorcontrib>Bose, Sombit</creatorcontrib><creatorcontrib>Saha, Rounak</creatorcontrib><creatorcontrib>Bhowmick, Ayan Kumar</creatorcontrib><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Goyal, Pawan</creatorcontrib><creatorcontrib>Ganguly, Niloy</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Kokku, Ravi</creatorcontrib><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><title>arXiv.org</title><description>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</description><subject>Documents</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Natural language processing</subject><subject>Performance evaluation</subject><subject>State-of-the-art reviews</subject><subject>Summaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOA60CZ-qrsqiosKit3XoK9txCY1H0VPr4IHcDWLGaZDAsZ5TJMRYz0SWnuJoohNpmw85gE5ZnhHIyqpKnA1wk4_0IAuIcu2dg4prKVCmnv1DdK2NVqcaii1gY2sarr34irdE1Lb4snRhbB4hoNvGmHkSzip1YB0S3G1GP7YJ8P1Kl9u6Gd182hdcdHeqI8qeJTMJrM4Zgn_r3oDGkBDqw</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Mullick, Ankan</creator><creator>Bose, Sombit</creator><creator>Saha, Rounak</creator><creator>Bhowmick, Ayan Kumar</creator><creator>Vempaty, Aditya</creator><creator>Goyal, Pawan</creator><creator>Ganguly, Niloy</creator><creator>Dey, Prasenjit</creator><creator>Kokku, Ravi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240805</creationdate><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><author>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30896911283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Documents</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Natural language processing</topic><topic>Performance evaluation</topic><topic>State-of-the-art reviews</topic><topic>Summaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Mullick, Ankan</creatorcontrib><creatorcontrib>Bose, Sombit</creatorcontrib><creatorcontrib>Saha, Rounak</creatorcontrib><creatorcontrib>Bhowmick, Ayan Kumar</creatorcontrib><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Goyal, Pawan</creatorcontrib><creatorcontrib>Ganguly, Niloy</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Kokku, Ravi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mullick, Ankan</au><au>Bose, Sombit</au><au>Saha, Rounak</au><au>Bhowmick, Ayan Kumar</au><au>Vempaty, Aditya</au><au>Goyal, Pawan</au><au>Ganguly, Niloy</au><au>Dey, Prasenjit</au><au>Kokku, Ravi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</atitle><jtitle>arXiv.org</jtitle><date>2024-08-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3089691128 |
source | Free E- Journals |
subjects | Documents Information retrieval Large language models Natural language processing Performance evaluation State-of-the-art reviews Summaries |
title | Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20the%20Power%20of%20LLMs:%20A%20Fine-Tuning%20Approach%20for%20High-Quality%20Aspect-Based%20Summarization&rft.jtitle=arXiv.org&rft.au=Mullick,%20Ankan&rft.date=2024-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3089691128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089691128&rft_id=info:pmid/&rfr_iscdi=true |