Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization

The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Mullick, Ankan, Bose, Sombit, Saha, Rounak, Bhowmick, Ayan Kumar, Vempaty, Aditya, Goyal, Pawan, Ganguly, Niloy, Dey, Prasenjit, Kokku, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mullick, Ankan
Bose, Sombit
Saha, Rounak
Bhowmick, Ayan Kumar
Vempaty, Aditya
Goyal, Pawan
Ganguly, Niloy
Dey, Prasenjit
Kokku, Ravi
description The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3089691128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089691128</sourcerecordid><originalsourceid>FETCH-proquest_journals_30896911283</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOA60CZ-qrsqiosKit3XoK9txCY1H0VPr4IHcDWLGaZDAsZ5TJMRYz0SWnuJoohNpmw85gE5ZnhHIyqpKnA1wk4_0IAuIcu2dg4prKVCmnv1DdK2NVqcaii1gY2sarr34irdE1Lb4snRhbB4hoNvGmHkSzip1YB0S3G1GP7YJ8P1Kl9u6Gd182hdcdHeqI8qeJTMJrM4Zgn_r3oDGkBDqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089691128</pqid></control><display><type>article</type><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><source>Free E- Journals</source><creator>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</creator><creatorcontrib>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</creatorcontrib><description>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Documents ; Information retrieval ; Large language models ; Natural language processing ; Performance evaluation ; State-of-the-art reviews ; Summaries</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mullick, Ankan</creatorcontrib><creatorcontrib>Bose, Sombit</creatorcontrib><creatorcontrib>Saha, Rounak</creatorcontrib><creatorcontrib>Bhowmick, Ayan Kumar</creatorcontrib><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Goyal, Pawan</creatorcontrib><creatorcontrib>Ganguly, Niloy</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Kokku, Ravi</creatorcontrib><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><title>arXiv.org</title><description>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</description><subject>Documents</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Natural language processing</subject><subject>Performance evaluation</subject><subject>State-of-the-art reviews</subject><subject>Summaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOA60CZ-qrsqiosKit3XoK9txCY1H0VPr4IHcDWLGaZDAsZ5TJMRYz0SWnuJoohNpmw85gE5ZnhHIyqpKnA1wk4_0IAuIcu2dg4prKVCmnv1DdK2NVqcaii1gY2sarr34irdE1Lb4snRhbB4hoNvGmHkSzip1YB0S3G1GP7YJ8P1Kl9u6Gd182hdcdHeqI8qeJTMJrM4Zgn_r3oDGkBDqw</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Mullick, Ankan</creator><creator>Bose, Sombit</creator><creator>Saha, Rounak</creator><creator>Bhowmick, Ayan Kumar</creator><creator>Vempaty, Aditya</creator><creator>Goyal, Pawan</creator><creator>Ganguly, Niloy</creator><creator>Dey, Prasenjit</creator><creator>Kokku, Ravi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240805</creationdate><title>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</title><author>Mullick, Ankan ; Bose, Sombit ; Saha, Rounak ; Bhowmick, Ayan Kumar ; Vempaty, Aditya ; Goyal, Pawan ; Ganguly, Niloy ; Dey, Prasenjit ; Kokku, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30896911283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Documents</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Natural language processing</topic><topic>Performance evaluation</topic><topic>State-of-the-art reviews</topic><topic>Summaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Mullick, Ankan</creatorcontrib><creatorcontrib>Bose, Sombit</creatorcontrib><creatorcontrib>Saha, Rounak</creatorcontrib><creatorcontrib>Bhowmick, Ayan Kumar</creatorcontrib><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Goyal, Pawan</creatorcontrib><creatorcontrib>Ganguly, Niloy</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Kokku, Ravi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mullick, Ankan</au><au>Bose, Sombit</au><au>Saha, Rounak</au><au>Bhowmick, Ayan Kumar</au><au>Vempaty, Aditya</au><au>Goyal, Pawan</au><au>Ganguly, Niloy</au><au>Dey, Prasenjit</au><au>Kokku, Ravi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization</atitle><jtitle>arXiv.org</jtitle><date>2024-08-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3089691128
source Free E- Journals
subjects Documents
Information retrieval
Large language models
Natural language processing
Performance evaluation
State-of-the-art reviews
Summaries
title Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20the%20Power%20of%20LLMs:%20A%20Fine-Tuning%20Approach%20for%20High-Quality%20Aspect-Based%20Summarization&rft.jtitle=arXiv.org&rft.au=Mullick,%20Ankan&rft.date=2024-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3089691128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089691128&rft_id=info:pmid/&rfr_iscdi=true