Nugget and corona bond size measurement through active thermography and transfer learning model
Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-08, Vol.133 (11-12), p.5883-5896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5896 |
---|---|
container_issue | 11-12 |
container_start_page | 5883 |
container_title | International journal of advanced manufacturing technology |
container_volume | 133 |
creator | Santoro, Luca Razza, Valentino De Maddis, Manuela |
description | Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis. |
doi_str_mv | 10.1007/s00170-024-14096-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089668703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089668703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GkSdP0KItfsOhFzyFNJ90u22RNWkF_vXErePM0M_C878CD0CWj14zS6iZRyipKaCEIE7SWRByhBROcE05ZeYwWtJCK8EqqU3SW0jbjkkm1QPp56joYsfEttiEGb3AT8p76L8ADmDRFGMCPeNzEMHUbbOzYf0A-IQ6hi2a_-TyEx2h8chDxDkz0ve_wEFrYnaMTZ3YJLn7nEr3d372uHsn65eFpdbsmthBiJLVtRdUI40pjFXNWFrwBBlSUXCkFlpm2aWlpnYOWgRFNZVrFmrqQjXUVSL5EV3PvPob3CdKot2GKPr_UnKpaSlVRnqlipmwMKUVweh_7wcRPzaj-EalnkTqL1AeRWuQQn0Mpw76D-Ff9T-ob_GN4zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089668703</pqid></control><display><type>article</type><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</creator><creatorcontrib>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</creatorcontrib><description>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14096-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Artificial neural networks ; Automatic control ; Automation ; Bonded joints ; CAE) and Design ; Computer-Aided Engineering (CAD ; Cost analysis ; Cost effectiveness ; Engineering ; Image quality ; Industrial and Production Engineering ; Lasers ; Machine learning ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Methods ; Neural networks ; Original Article ; Quality control ; Quality management ; Resistance spot welding ; Shear strength ; Signal analysis ; Signal quality ; Spot welds ; State-of-the-art reviews ; Structural integrity ; Thermal resistance ; Thermodynamic properties ; Thermography</subject><ispartof>International journal of advanced manufacturing technology, 2024-08, Vol.133 (11-12), p.5883-5896</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-14096-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-14096-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Santoro, Luca</creatorcontrib><creatorcontrib>Razza, Valentino</creatorcontrib><creatorcontrib>De Maddis, Manuela</creatorcontrib><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</description><subject>Advanced manufacturing technologies</subject><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Automation</subject><subject>Bonded joints</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Engineering</subject><subject>Image quality</subject><subject>Industrial and Production Engineering</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Resistance spot welding</subject><subject>Shear strength</subject><subject>Signal analysis</subject><subject>Signal quality</subject><subject>Spot welds</subject><subject>State-of-the-art reviews</subject><subject>Structural integrity</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Thermography</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GkSdP0KItfsOhFzyFNJ90u22RNWkF_vXErePM0M_C878CD0CWj14zS6iZRyipKaCEIE7SWRByhBROcE05ZeYwWtJCK8EqqU3SW0jbjkkm1QPp56joYsfEttiEGb3AT8p76L8ADmDRFGMCPeNzEMHUbbOzYf0A-IQ6hi2a_-TyEx2h8chDxDkz0ve_wEFrYnaMTZ3YJLn7nEr3d372uHsn65eFpdbsmthBiJLVtRdUI40pjFXNWFrwBBlSUXCkFlpm2aWlpnYOWgRFNZVrFmrqQjXUVSL5EV3PvPob3CdKot2GKPr_UnKpaSlVRnqlipmwMKUVweh_7wcRPzaj-EalnkTqL1AeRWuQQn0Mpw76D-Ff9T-ob_GN4zg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Santoro, Luca</creator><creator>Razza, Valentino</creator><creator>De Maddis, Manuela</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><author>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Automation</topic><topic>Bonded joints</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Engineering</topic><topic>Image quality</topic><topic>Industrial and Production Engineering</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Resistance spot welding</topic><topic>Shear strength</topic><topic>Signal analysis</topic><topic>Signal quality</topic><topic>Spot welds</topic><topic>State-of-the-art reviews</topic><topic>Structural integrity</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoro, Luca</creatorcontrib><creatorcontrib>Razza, Valentino</creatorcontrib><creatorcontrib>De Maddis, Manuela</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoro, Luca</au><au>Razza, Valentino</au><au>De Maddis, Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nugget and corona bond size measurement through active thermography and transfer learning model</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>133</volume><issue>11-12</issue><spage>5883</spage><epage>5896</epage><pages>5883-5896</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14096-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-08, Vol.133 (11-12), p.5883-5896 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3089668703 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced manufacturing technologies Artificial neural networks Automatic control Automation Bonded joints CAE) and Design Computer-Aided Engineering (CAD Cost analysis Cost effectiveness Engineering Image quality Industrial and Production Engineering Lasers Machine learning Manufacturing Mechanical Engineering Mechanical properties Media Management Methods Neural networks Original Article Quality control Quality management Resistance spot welding Shear strength Signal analysis Signal quality Spot welds State-of-the-art reviews Structural integrity Thermal resistance Thermodynamic properties Thermography |
title | Nugget and corona bond size measurement through active thermography and transfer learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nugget%20and%20corona%20bond%20size%20measurement%20through%20active%20thermography%20and%20transfer%20learning%20model&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Santoro,%20Luca&rft.date=2024-08-01&rft.volume=133&rft.issue=11-12&rft.spage=5883&rft.epage=5896&rft.pages=5883-5896&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14096-4&rft_dat=%3Cproquest_cross%3E3089668703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089668703&rft_id=info:pmid/&rfr_iscdi=true |