Nugget and corona bond size measurement through active thermography and transfer learning model

Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-08, Vol.133 (11-12), p.5883-5896
Hauptverfasser: Santoro, Luca, Razza, Valentino, De Maddis, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5896
container_issue 11-12
container_start_page 5883
container_title International journal of advanced manufacturing technology
container_volume 133
creator Santoro, Luca
Razza, Valentino
De Maddis, Manuela
description Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.
doi_str_mv 10.1007/s00170-024-14096-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089668703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089668703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GkSdP0KItfsOhFzyFNJ90u22RNWkF_vXErePM0M_C878CD0CWj14zS6iZRyipKaCEIE7SWRByhBROcE05ZeYwWtJCK8EqqU3SW0jbjkkm1QPp56joYsfEttiEGb3AT8p76L8ADmDRFGMCPeNzEMHUbbOzYf0A-IQ6hi2a_-TyEx2h8chDxDkz0ve_wEFrYnaMTZ3YJLn7nEr3d372uHsn65eFpdbsmthBiJLVtRdUI40pjFXNWFrwBBlSUXCkFlpm2aWlpnYOWgRFNZVrFmrqQjXUVSL5EV3PvPob3CdKot2GKPr_UnKpaSlVRnqlipmwMKUVweh_7wcRPzaj-EalnkTqL1AeRWuQQn0Mpw76D-Ff9T-ob_GN4zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089668703</pqid></control><display><type>article</type><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</creator><creatorcontrib>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</creatorcontrib><description>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14096-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Artificial neural networks ; Automatic control ; Automation ; Bonded joints ; CAE) and Design ; Computer-Aided Engineering (CAD ; Cost analysis ; Cost effectiveness ; Engineering ; Image quality ; Industrial and Production Engineering ; Lasers ; Machine learning ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Methods ; Neural networks ; Original Article ; Quality control ; Quality management ; Resistance spot welding ; Shear strength ; Signal analysis ; Signal quality ; Spot welds ; State-of-the-art reviews ; Structural integrity ; Thermal resistance ; Thermodynamic properties ; Thermography</subject><ispartof>International journal of advanced manufacturing technology, 2024-08, Vol.133 (11-12), p.5883-5896</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-14096-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-14096-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Santoro, Luca</creatorcontrib><creatorcontrib>Razza, Valentino</creatorcontrib><creatorcontrib>De Maddis, Manuela</creatorcontrib><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</description><subject>Advanced manufacturing technologies</subject><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Automation</subject><subject>Bonded joints</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Engineering</subject><subject>Image quality</subject><subject>Industrial and Production Engineering</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Resistance spot welding</subject><subject>Shear strength</subject><subject>Signal analysis</subject><subject>Signal quality</subject><subject>Spot welds</subject><subject>State-of-the-art reviews</subject><subject>Structural integrity</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Thermography</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9GkSdP0KItfsOhFzyFNJ90u22RNWkF_vXErePM0M_C878CD0CWj14zS6iZRyipKaCEIE7SWRByhBROcE05ZeYwWtJCK8EqqU3SW0jbjkkm1QPp56joYsfEttiEGb3AT8p76L8ADmDRFGMCPeNzEMHUbbOzYf0A-IQ6hi2a_-TyEx2h8chDxDkz0ve_wEFrYnaMTZ3YJLn7nEr3d372uHsn65eFpdbsmthBiJLVtRdUI40pjFXNWFrwBBlSUXCkFlpm2aWlpnYOWgRFNZVrFmrqQjXUVSL5EV3PvPob3CdKot2GKPr_UnKpaSlVRnqlipmwMKUVweh_7wcRPzaj-EalnkTqL1AeRWuQQn0Mpw76D-Ff9T-ob_GN4zg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Santoro, Luca</creator><creator>Razza, Valentino</creator><creator>De Maddis, Manuela</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Nugget and corona bond size measurement through active thermography and transfer learning model</title><author>Santoro, Luca ; Razza, Valentino ; De Maddis, Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9cd47b4af5ac81fc623be1e0453888ec1adbd05cffed1ea4b7ad81b926bcf7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Automation</topic><topic>Bonded joints</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Engineering</topic><topic>Image quality</topic><topic>Industrial and Production Engineering</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Resistance spot welding</topic><topic>Shear strength</topic><topic>Signal analysis</topic><topic>Signal quality</topic><topic>Spot welds</topic><topic>State-of-the-art reviews</topic><topic>Structural integrity</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoro, Luca</creatorcontrib><creatorcontrib>Razza, Valentino</creatorcontrib><creatorcontrib>De Maddis, Manuela</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoro, Luca</au><au>Razza, Valentino</au><au>De Maddis, Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nugget and corona bond size measurement through active thermography and transfer learning model</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>133</volume><issue>11-12</issue><spage>5883</spage><epage>5896</epage><pages>5883-5896</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Resistance spot welding (RSW) is considered a preferred technique for joining metal parts in various industries, mainly for its efficiency and cost-effectiveness. The mechanical properties of spot welds are pivotal in ensuring structural integrity and overall assembly performance. In this work, the quality attributes of resistance spot welding, such as both nugget and corona bond sizes, are assessed by analyzing the thermal behavior of the joint using a physical information neural network (PINN). Starting from the thermal signal phase gradient and amplitude gradient maps, a convolutional neural network (CNN) estimates the size of nuggets and corona bonds. The CNN architecture is based on the Inception V3 architecture, a state-of-the-art neural network that excels in image recognition tasks. This study suggests adopting a new methodology for automatic RSW quality control based on thermal signal analysis.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14096-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-08, Vol.133 (11-12), p.5883-5896
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3089668703
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Artificial neural networks
Automatic control
Automation
Bonded joints
CAE) and Design
Computer-Aided Engineering (CAD
Cost analysis
Cost effectiveness
Engineering
Image quality
Industrial and Production Engineering
Lasers
Machine learning
Manufacturing
Mechanical Engineering
Mechanical properties
Media Management
Methods
Neural networks
Original Article
Quality control
Quality management
Resistance spot welding
Shear strength
Signal analysis
Signal quality
Spot welds
State-of-the-art reviews
Structural integrity
Thermal resistance
Thermodynamic properties
Thermography
title Nugget and corona bond size measurement through active thermography and transfer learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nugget%20and%20corona%20bond%20size%20measurement%20through%20active%20thermography%20and%20transfer%20learning%20model&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Santoro,%20Luca&rft.date=2024-08-01&rft.volume=133&rft.issue=11-12&rft.spage=5883&rft.epage=5896&rft.pages=5883-5896&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14096-4&rft_dat=%3Cproquest_cross%3E3089668703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089668703&rft_id=info:pmid/&rfr_iscdi=true