Automatic characterization of Meibomian gland morphology

Aims/Purpose: To characterize the Meibomian gland (MG) morphology in healthy subjects with an automatic software. Methods: An automatic software was developed for image analysis in R code, consisting of 4 stages: (1) selection of the region of interest, (2) image preprocessing to obtain a binary and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta ophthalmologica (Oxford, England) England), 2024-01, Vol.102 (S279), p.n/a
Hauptverfasser: Novo‐Diez, Andrea, Blanco‐Vázquez, Marta, Arlanzón‐Lope, Pablo, Valencia‐Sandonís, Cristina, González‐García, María J., Fernández, Itziar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S279
container_start_page
container_title Acta ophthalmologica (Oxford, England)
container_volume 102
creator Novo‐Diez, Andrea
Blanco‐Vázquez, Marta
Arlanzón‐Lope, Pablo
Valencia‐Sandonís, Cristina
González‐García, María J.
Fernández, Itziar
description Aims/Purpose: To characterize the Meibomian gland (MG) morphology in healthy subjects with an automatic software. Methods: An automatic software was developed for image analysis in R code, consisting of 4 stages: (1) selection of the region of interest, (2) image preprocessing to obtain a binary and a skeleton image, (3) modelling of each MG to fit each MG to a piecewise linear model, and (4) quantification of the following MG features: tortuosity, MG shortening, number of MGs, deviation from a vertical line, and MG area. Meibography images of the upper eyelid were acquired using the Easy Tear View+®. A group of 156 healthy subjects were included, with a mean age and confidence interval (CI) of 43.88 (95% CI: 41.38–46.37) years, range 16–76 years. Reference intervals (RI) were calculated for each MG feature to be used as a diagnostic tool to classify a specific value as normal or non‐normal. Generalized Additive Models for Location, Scale and Shape were used to estimate the percentile curve for each morphologic feature of MG, considering the influence of age and sex. Results: Age had an influence on tortuosity, mean = 0.3 (95% CI: 0.3–0.31), RI: 0.19–0.4
doi_str_mv 10.1111/aos.16006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089658843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089658843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1376-74dc8e6ff0b8b8e42d02b8f9e28720e2c3bc9f07ef3d211f75a7e2a0ab8834f93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_AcFTx66m482SY9l0VVY2YMK3kKaJrtZ2qYmXaT-eqMVb85lZuCZeeEB4BrBBYq1lC4sEIWQnoAZYnmeEkb56d-cv52DixAOEUCUZjPAy-PgWjlYlai99FIN2tvPuLsucSZ50rZyrZVdsmtkVyet8_3eNW43XoIzI5ugr377HLze372sHtLNdv24KjepQjE6ZVmtuKbGwIpXXGe4hrjiptCYMww1VqRShYFMG1JjhAzLJdNYQllxTjJTkDm4mf723r0fdRjEwR19FyMFgbygOecZidTtRCnvQvDaiN7bVvpRICi-xYgoRvyIiexyYj9so8f_QVFun6eLL9cpZMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089658843</pqid></control><display><type>article</type><title>Automatic characterization of Meibomian gland morphology</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Novo‐Diez, Andrea ; Blanco‐Vázquez, Marta ; Arlanzón‐Lope, Pablo ; Valencia‐Sandonís, Cristina ; González‐García, María J. ; Fernández, Itziar</creator><creatorcontrib>Novo‐Diez, Andrea ; Blanco‐Vázquez, Marta ; Arlanzón‐Lope, Pablo ; Valencia‐Sandonís, Cristina ; González‐García, María J. ; Fernández, Itziar</creatorcontrib><description>Aims/Purpose: To characterize the Meibomian gland (MG) morphology in healthy subjects with an automatic software. Methods: An automatic software was developed for image analysis in R code, consisting of 4 stages: (1) selection of the region of interest, (2) image preprocessing to obtain a binary and a skeleton image, (3) modelling of each MG to fit each MG to a piecewise linear model, and (4) quantification of the following MG features: tortuosity, MG shortening, number of MGs, deviation from a vertical line, and MG area. Meibography images of the upper eyelid were acquired using the Easy Tear View+®. A group of 156 healthy subjects were included, with a mean age and confidence interval (CI) of 43.88 (95% CI: 41.38–46.37) years, range 16–76 years. Reference intervals (RI) were calculated for each MG feature to be used as a diagnostic tool to classify a specific value as normal or non‐normal. Generalized Additive Models for Location, Scale and Shape were used to estimate the percentile curve for each morphologic feature of MG, considering the influence of age and sex. Results: Age had an influence on tortuosity, mean = 0.3 (95% CI: 0.3–0.31), RI: 0.19–0.4 &lt;20 years, and 0.24–0.39 at 50–60 years. Age and sex had an influence in the MG shortening, mean = 63% (95% CI: 62–64%), mean RI: 58–74% &lt;20 years; 59–84% &gt;75 years; women RI: 56–71% &lt;20 years; 57–82% &gt;75 years. The rest of the variables were not affected by age or sex: number of MGs = 16.05 (95% CI: 15.28–16.82), RI: 8–27; vertical deviation = 0.37 (95% CI: 0.36–0.38), RI: 0.29–0.45, and MG area = 14% (95% CI: 14–15%), RI: 8.17–19.81%. Conclusions: Tortuosity variability decreases between 45 and 60 years of age. The MG shortening increases with age and is higher in men. These values could be useful to classify a meibography image as normal or non‐normal, helping to diagnose MG alterations in an objective way.</description><identifier>ISSN: 1755-375X</identifier><identifier>EISSN: 1755-3768</identifier><identifier>DOI: 10.1111/aos.16006</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Age ; Eyelid ; Image processing ; Morphology ; Sex</subject><ispartof>Acta ophthalmologica (Oxford, England), 2024-01, Vol.102 (S279), p.n/a</ispartof><rights>2024 The Authors Acta Ophthalmologica © 2024 Acta Ophthalmologica Scandinavica Foundation</rights><rights>Copyright © 2024 Acta Ophthalmologica Scandinavica Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faos.16006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45573,46831</link.rule.ids></links><search><creatorcontrib>Novo‐Diez, Andrea</creatorcontrib><creatorcontrib>Blanco‐Vázquez, Marta</creatorcontrib><creatorcontrib>Arlanzón‐Lope, Pablo</creatorcontrib><creatorcontrib>Valencia‐Sandonís, Cristina</creatorcontrib><creatorcontrib>González‐García, María J.</creatorcontrib><creatorcontrib>Fernández, Itziar</creatorcontrib><title>Automatic characterization of Meibomian gland morphology</title><title>Acta ophthalmologica (Oxford, England)</title><description>Aims/Purpose: To characterize the Meibomian gland (MG) morphology in healthy subjects with an automatic software. Methods: An automatic software was developed for image analysis in R code, consisting of 4 stages: (1) selection of the region of interest, (2) image preprocessing to obtain a binary and a skeleton image, (3) modelling of each MG to fit each MG to a piecewise linear model, and (4) quantification of the following MG features: tortuosity, MG shortening, number of MGs, deviation from a vertical line, and MG area. Meibography images of the upper eyelid were acquired using the Easy Tear View+®. A group of 156 healthy subjects were included, with a mean age and confidence interval (CI) of 43.88 (95% CI: 41.38–46.37) years, range 16–76 years. Reference intervals (RI) were calculated for each MG feature to be used as a diagnostic tool to classify a specific value as normal or non‐normal. Generalized Additive Models for Location, Scale and Shape were used to estimate the percentile curve for each morphologic feature of MG, considering the influence of age and sex. Results: Age had an influence on tortuosity, mean = 0.3 (95% CI: 0.3–0.31), RI: 0.19–0.4 &lt;20 years, and 0.24–0.39 at 50–60 years. Age and sex had an influence in the MG shortening, mean = 63% (95% CI: 62–64%), mean RI: 58–74% &lt;20 years; 59–84% &gt;75 years; women RI: 56–71% &lt;20 years; 57–82% &gt;75 years. The rest of the variables were not affected by age or sex: number of MGs = 16.05 (95% CI: 15.28–16.82), RI: 8–27; vertical deviation = 0.37 (95% CI: 0.36–0.38), RI: 0.29–0.45, and MG area = 14% (95% CI: 14–15%), RI: 8.17–19.81%. Conclusions: Tortuosity variability decreases between 45 and 60 years of age. The MG shortening increases with age and is higher in men. These values could be useful to classify a meibography image as normal or non‐normal, helping to diagnose MG alterations in an objective way.</description><subject>Age</subject><subject>Eyelid</subject><subject>Image processing</subject><subject>Morphology</subject><subject>Sex</subject><issn>1755-375X</issn><issn>1755-3768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_AcFTx66m482SY9l0VVY2YMK3kKaJrtZ2qYmXaT-eqMVb85lZuCZeeEB4BrBBYq1lC4sEIWQnoAZYnmeEkb56d-cv52DixAOEUCUZjPAy-PgWjlYlai99FIN2tvPuLsucSZ50rZyrZVdsmtkVyet8_3eNW43XoIzI5ugr377HLze372sHtLNdv24KjepQjE6ZVmtuKbGwIpXXGe4hrjiptCYMww1VqRShYFMG1JjhAzLJdNYQllxTjJTkDm4mf723r0fdRjEwR19FyMFgbygOecZidTtRCnvQvDaiN7bVvpRICi-xYgoRvyIiexyYj9so8f_QVFun6eLL9cpZMI</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Novo‐Diez, Andrea</creator><creator>Blanco‐Vázquez, Marta</creator><creator>Arlanzón‐Lope, Pablo</creator><creator>Valencia‐Sandonís, Cristina</creator><creator>González‐García, María J.</creator><creator>Fernández, Itziar</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>202401</creationdate><title>Automatic characterization of Meibomian gland morphology</title><author>Novo‐Diez, Andrea ; Blanco‐Vázquez, Marta ; Arlanzón‐Lope, Pablo ; Valencia‐Sandonís, Cristina ; González‐García, María J. ; Fernández, Itziar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1376-74dc8e6ff0b8b8e42d02b8f9e28720e2c3bc9f07ef3d211f75a7e2a0ab8834f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age</topic><topic>Eyelid</topic><topic>Image processing</topic><topic>Morphology</topic><topic>Sex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novo‐Diez, Andrea</creatorcontrib><creatorcontrib>Blanco‐Vázquez, Marta</creatorcontrib><creatorcontrib>Arlanzón‐Lope, Pablo</creatorcontrib><creatorcontrib>Valencia‐Sandonís, Cristina</creatorcontrib><creatorcontrib>González‐García, María J.</creatorcontrib><creatorcontrib>Fernández, Itziar</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Acta ophthalmologica (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novo‐Diez, Andrea</au><au>Blanco‐Vázquez, Marta</au><au>Arlanzón‐Lope, Pablo</au><au>Valencia‐Sandonís, Cristina</au><au>González‐García, María J.</au><au>Fernández, Itziar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic characterization of Meibomian gland morphology</atitle><jtitle>Acta ophthalmologica (Oxford, England)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>102</volume><issue>S279</issue><epage>n/a</epage><issn>1755-375X</issn><eissn>1755-3768</eissn><abstract>Aims/Purpose: To characterize the Meibomian gland (MG) morphology in healthy subjects with an automatic software. Methods: An automatic software was developed for image analysis in R code, consisting of 4 stages: (1) selection of the region of interest, (2) image preprocessing to obtain a binary and a skeleton image, (3) modelling of each MG to fit each MG to a piecewise linear model, and (4) quantification of the following MG features: tortuosity, MG shortening, number of MGs, deviation from a vertical line, and MG area. Meibography images of the upper eyelid were acquired using the Easy Tear View+®. A group of 156 healthy subjects were included, with a mean age and confidence interval (CI) of 43.88 (95% CI: 41.38–46.37) years, range 16–76 years. Reference intervals (RI) were calculated for each MG feature to be used as a diagnostic tool to classify a specific value as normal or non‐normal. Generalized Additive Models for Location, Scale and Shape were used to estimate the percentile curve for each morphologic feature of MG, considering the influence of age and sex. Results: Age had an influence on tortuosity, mean = 0.3 (95% CI: 0.3–0.31), RI: 0.19–0.4 &lt;20 years, and 0.24–0.39 at 50–60 years. Age and sex had an influence in the MG shortening, mean = 63% (95% CI: 62–64%), mean RI: 58–74% &lt;20 years; 59–84% &gt;75 years; women RI: 56–71% &lt;20 years; 57–82% &gt;75 years. The rest of the variables were not affected by age or sex: number of MGs = 16.05 (95% CI: 15.28–16.82), RI: 8–27; vertical deviation = 0.37 (95% CI: 0.36–0.38), RI: 0.29–0.45, and MG area = 14% (95% CI: 14–15%), RI: 8.17–19.81%. Conclusions: Tortuosity variability decreases between 45 and 60 years of age. The MG shortening increases with age and is higher in men. These values could be useful to classify a meibography image as normal or non‐normal, helping to diagnose MG alterations in an objective way.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/aos.16006</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-375X
ispartof Acta ophthalmologica (Oxford, England), 2024-01, Vol.102 (S279), p.n/a
issn 1755-375X
1755-3768
language eng
recordid cdi_proquest_journals_3089658843
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Age
Eyelid
Image processing
Morphology
Sex
title Automatic characterization of Meibomian gland morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20characterization%20of%20Meibomian%20gland%20morphology&rft.jtitle=Acta%20ophthalmologica%20(Oxford,%20England)&rft.au=Novo%E2%80%90Diez,%20Andrea&rft.date=2024-01&rft.volume=102&rft.issue=S279&rft.epage=n/a&rft.issn=1755-375X&rft.eissn=1755-3768&rft_id=info:doi/10.1111/aos.16006&rft_dat=%3Cproquest_cross%3E3089658843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089658843&rft_id=info:pmid/&rfr_iscdi=true