Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases

Retinal neurodegenerative diseases (RND), including age‐related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and others, are the most common cause of irreversible low vision and blindness. Although the aetiology and clinical characteristics of retinal RND can differ ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta ophthalmologica (Oxford, England) England), 2024-01, Vol.102 (S279), p.n/a
1. Verfasser: Fernandez‐Bueno, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S279
container_start_page
container_title Acta ophthalmologica (Oxford, England)
container_volume 102
creator Fernandez‐Bueno, Ivan
description Retinal neurodegenerative diseases (RND), including age‐related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and others, are the most common cause of irreversible low vision and blindness. Although the aetiology and clinical characteristics of retinal RND can differ phenotypically, the neurodegenerative mechanisms of these diseases share common cellular and molecular signalization pathways. No cures are available for most RND, and cell‐based therapy may be a potential treatment through the paracrine properties of mesenchymal stromal cells (MSC). Furthermore, developing cell‐free compositions based on the production of “MSC secretome cocktails” is a promising therapeutic strategy and has significant advantages over using living cells in clinical practice. Ex vivo neuroretina models are adequate tools for evaluating retinal physiology and pathobiology. Neuroretina explant cultures closely resemble in vivo conditions, thus, preserving complex in vivo neuronal connections and retaining the functionality of non‐neuronal cells of the retina. Furthermore, cellular and molecular biology techniques can be applied to retinal explant cultures. In the ex vivo spontaneous neuroretinal degeneration model, the MSC secretome preserves retinal morphology and limits pro‐apoptotic‐ and pro‐necroptotic‐related genes and protein expression. Furthermore, the MSC secretome modulates autophagy‐related genes and proteins and stimulates the activation of antioxidant‐associated genes. Therefore, the neuroprotective ability of the MSC secretome is associated with the inhibition of apoptosis and necroptosis, modulation of autophagy, and activation of the antioxidant machinery during retinal degeneration. MSC secretome shows neuroprotective properties and the potential to modulate retinal responses to neurodegeneration, thus reinforcing the idea that MSC secretome may be a therapeutic strategy for treating RND.
doi_str_mv 10.1111/aos.16386
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089658814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089658814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1376-85c0c543941bc4e3f5072e1baf4669f7e01fa2f4639e55343c707a2068062ed13</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFpd-AYkrlxMC8PAMMum8S-p6aKauENKL3Wa6VCBqenbix3jzru5h_Cdm5OD0DUlI5pmrF0YUcGkOEEDWnKesVLI0z_N387RRQgbQgQVohig97u9bjod63aN4wfgFjrvdt5FMLHeA94l1cZaN9hZ_LyY4gDGQ3RbwNZ5nGTdps-jbQVraMHro3FVB9ABwiU6s7oJcPW7h-j1_u5l-pjN5g9P08ksMzRFzCQ3xPCCVQVdmgKY5aTMgS61LYSobAmEWp2nB6uAc1YwU5JS50RIInJYUTZEN_3dFP6zgxDVxnU-ZQuKEVkJLiUtEnXbU8a7EDxYtfP1VvuDokT9FKhSgepYYGLHPftVN3D4H1ST-aJ3fAOUi3L2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089658814</pqid></control><display><type>article</type><title>Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases</title><source>Wiley Journals</source><creator>Fernandez‐Bueno, Ivan</creator><creatorcontrib>Fernandez‐Bueno, Ivan</creatorcontrib><description>Retinal neurodegenerative diseases (RND), including age‐related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and others, are the most common cause of irreversible low vision and blindness. Although the aetiology and clinical characteristics of retinal RND can differ phenotypically, the neurodegenerative mechanisms of these diseases share common cellular and molecular signalization pathways. No cures are available for most RND, and cell‐based therapy may be a potential treatment through the paracrine properties of mesenchymal stromal cells (MSC). Furthermore, developing cell‐free compositions based on the production of “MSC secretome cocktails” is a promising therapeutic strategy and has significant advantages over using living cells in clinical practice. Ex vivo neuroretina models are adequate tools for evaluating retinal physiology and pathobiology. Neuroretina explant cultures closely resemble in vivo conditions, thus, preserving complex in vivo neuronal connections and retaining the functionality of non‐neuronal cells of the retina. Furthermore, cellular and molecular biology techniques can be applied to retinal explant cultures. In the ex vivo spontaneous neuroretinal degeneration model, the MSC secretome preserves retinal morphology and limits pro‐apoptotic‐ and pro‐necroptotic‐related genes and protein expression. Furthermore, the MSC secretome modulates autophagy‐related genes and proteins and stimulates the activation of antioxidant‐associated genes. Therefore, the neuroprotective ability of the MSC secretome is associated with the inhibition of apoptosis and necroptosis, modulation of autophagy, and activation of the antioxidant machinery during retinal degeneration. MSC secretome shows neuroprotective properties and the potential to modulate retinal responses to neurodegeneration, thus reinforcing the idea that MSC secretome may be a therapeutic strategy for treating RND.</description><identifier>ISSN: 1755-375X</identifier><identifier>EISSN: 1755-3768</identifier><identifier>DOI: 10.1111/aos.16386</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Antioxidants ; Apoptosis ; Autophagy ; Cell culture ; Diabetes mellitus ; Glaucoma ; Macular degeneration ; Mesenchymal stem cells ; Necroptosis ; Neurodegeneration ; Neurodegenerative diseases ; Neuromodulation ; Neuroprotection ; Paracrine signalling ; Retina ; Retinal degeneration ; Retinitis pigmentosa ; Retinopathy ; Secretome ; Stromal cells ; Transcription activation</subject><ispartof>Acta ophthalmologica (Oxford, England), 2024-01, Vol.102 (S279), p.n/a</ispartof><rights>2024 The Authors Acta Ophthalmologica © 2024 Acta Ophthalmologica Scandinavica Foundation</rights><rights>Copyright © 2024 Acta Ophthalmologica Scandinavica Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faos.16386$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45575</link.rule.ids></links><search><creatorcontrib>Fernandez‐Bueno, Ivan</creatorcontrib><title>Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases</title><title>Acta ophthalmologica (Oxford, England)</title><description>Retinal neurodegenerative diseases (RND), including age‐related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and others, are the most common cause of irreversible low vision and blindness. Although the aetiology and clinical characteristics of retinal RND can differ phenotypically, the neurodegenerative mechanisms of these diseases share common cellular and molecular signalization pathways. No cures are available for most RND, and cell‐based therapy may be a potential treatment through the paracrine properties of mesenchymal stromal cells (MSC). Furthermore, developing cell‐free compositions based on the production of “MSC secretome cocktails” is a promising therapeutic strategy and has significant advantages over using living cells in clinical practice. Ex vivo neuroretina models are adequate tools for evaluating retinal physiology and pathobiology. Neuroretina explant cultures closely resemble in vivo conditions, thus, preserving complex in vivo neuronal connections and retaining the functionality of non‐neuronal cells of the retina. Furthermore, cellular and molecular biology techniques can be applied to retinal explant cultures. In the ex vivo spontaneous neuroretinal degeneration model, the MSC secretome preserves retinal morphology and limits pro‐apoptotic‐ and pro‐necroptotic‐related genes and protein expression. Furthermore, the MSC secretome modulates autophagy‐related genes and proteins and stimulates the activation of antioxidant‐associated genes. Therefore, the neuroprotective ability of the MSC secretome is associated with the inhibition of apoptosis and necroptosis, modulation of autophagy, and activation of the antioxidant machinery during retinal degeneration. MSC secretome shows neuroprotective properties and the potential to modulate retinal responses to neurodegeneration, thus reinforcing the idea that MSC secretome may be a therapeutic strategy for treating RND.</description><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Cell culture</subject><subject>Diabetes mellitus</subject><subject>Glaucoma</subject><subject>Macular degeneration</subject><subject>Mesenchymal stem cells</subject><subject>Necroptosis</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuromodulation</subject><subject>Neuroprotection</subject><subject>Paracrine signalling</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinitis pigmentosa</subject><subject>Retinopathy</subject><subject>Secretome</subject><subject>Stromal cells</subject><subject>Transcription activation</subject><issn>1755-375X</issn><issn>1755-3768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAyEUhYnRxFpd-AYkrlxMC8PAMMum8S-p6aKauENKL3Wa6VCBqenbix3jzru5h_Cdm5OD0DUlI5pmrF0YUcGkOEEDWnKesVLI0z_N387RRQgbQgQVohig97u9bjod63aN4wfgFjrvdt5FMLHeA94l1cZaN9hZ_LyY4gDGQ3RbwNZ5nGTdps-jbQVraMHro3FVB9ABwiU6s7oJcPW7h-j1_u5l-pjN5g9P08ksMzRFzCQ3xPCCVQVdmgKY5aTMgS61LYSobAmEWp2nB6uAc1YwU5JS50RIInJYUTZEN_3dFP6zgxDVxnU-ZQuKEVkJLiUtEnXbU8a7EDxYtfP1VvuDokT9FKhSgepYYGLHPftVN3D4H1ST-aJ3fAOUi3L2</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Fernandez‐Bueno, Ivan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>202401</creationdate><title>Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases</title><author>Fernandez‐Bueno, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1376-85c0c543941bc4e3f5072e1baf4669f7e01fa2f4639e55343c707a2068062ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Cell culture</topic><topic>Diabetes mellitus</topic><topic>Glaucoma</topic><topic>Macular degeneration</topic><topic>Mesenchymal stem cells</topic><topic>Necroptosis</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuromodulation</topic><topic>Neuroprotection</topic><topic>Paracrine signalling</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinitis pigmentosa</topic><topic>Retinopathy</topic><topic>Secretome</topic><topic>Stromal cells</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez‐Bueno, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Acta ophthalmologica (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez‐Bueno, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases</atitle><jtitle>Acta ophthalmologica (Oxford, England)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>102</volume><issue>S279</issue><epage>n/a</epage><issn>1755-375X</issn><eissn>1755-3768</eissn><abstract>Retinal neurodegenerative diseases (RND), including age‐related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and others, are the most common cause of irreversible low vision and blindness. Although the aetiology and clinical characteristics of retinal RND can differ phenotypically, the neurodegenerative mechanisms of these diseases share common cellular and molecular signalization pathways. No cures are available for most RND, and cell‐based therapy may be a potential treatment through the paracrine properties of mesenchymal stromal cells (MSC). Furthermore, developing cell‐free compositions based on the production of “MSC secretome cocktails” is a promising therapeutic strategy and has significant advantages over using living cells in clinical practice. Ex vivo neuroretina models are adequate tools for evaluating retinal physiology and pathobiology. Neuroretina explant cultures closely resemble in vivo conditions, thus, preserving complex in vivo neuronal connections and retaining the functionality of non‐neuronal cells of the retina. Furthermore, cellular and molecular biology techniques can be applied to retinal explant cultures. In the ex vivo spontaneous neuroretinal degeneration model, the MSC secretome preserves retinal morphology and limits pro‐apoptotic‐ and pro‐necroptotic‐related genes and protein expression. Furthermore, the MSC secretome modulates autophagy‐related genes and proteins and stimulates the activation of antioxidant‐associated genes. Therefore, the neuroprotective ability of the MSC secretome is associated with the inhibition of apoptosis and necroptosis, modulation of autophagy, and activation of the antioxidant machinery during retinal degeneration. MSC secretome shows neuroprotective properties and the potential to modulate retinal responses to neurodegeneration, thus reinforcing the idea that MSC secretome may be a therapeutic strategy for treating RND.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/aos.16386</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-375X
ispartof Acta ophthalmologica (Oxford, England), 2024-01, Vol.102 (S279), p.n/a
issn 1755-375X
1755-3768
language eng
recordid cdi_proquest_journals_3089658814
source Wiley Journals
subjects Antioxidants
Apoptosis
Autophagy
Cell culture
Diabetes mellitus
Glaucoma
Macular degeneration
Mesenchymal stem cells
Necroptosis
Neurodegeneration
Neurodegenerative diseases
Neuromodulation
Neuroprotection
Paracrine signalling
Retina
Retinal degeneration
Retinitis pigmentosa
Retinopathy
Secretome
Stromal cells
Transcription activation
title Evaluating the neuroprotective potential of MSC secretome for retinal neurodegenerative diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20neuroprotective%20potential%20of%20MSC%20secretome%20for%20retinal%20neurodegenerative%20diseases&rft.jtitle=Acta%20ophthalmologica%20(Oxford,%20England)&rft.au=Fernandez%E2%80%90Bueno,%20Ivan&rft.date=2024-01&rft.volume=102&rft.issue=S279&rft.epage=n/a&rft.issn=1755-375X&rft.eissn=1755-3768&rft_id=info:doi/10.1111/aos.16386&rft_dat=%3Cproquest_cross%3E3089658814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089658814&rft_id=info:pmid/&rfr_iscdi=true