Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature

Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424
Hauptverfasser: Guo, Liangchao, Han, Haoran, Wang, Junke, Wang, Peng, Du, Chunyu, Wang, Bo, Yuan, Qilong, Zhai, Yongbiao, Zhang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20424
container_issue 31
container_start_page 20414
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Guo, Liangchao
Han, Haoran
Wang, Junke
Wang, Peng
Du, Chunyu
Wang, Bo
Yuan, Qilong
Zhai, Yongbiao
Zhang, Chao
description Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (>30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.
doi_str_mv 10.1039/d4ta03815k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3089309762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089309762</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-c93425ee8a7dfa324fe6bb0fef176b1d9611c9b3cfb28a14b1d4133af79f2dfc3</originalsourceid><addsrcrecordid>eNo9TclOwzAUtBBIVKUXvsAS54C3OPYRhaVIFb2UC5fKjp9JCo2D7bD8PWERc5nRaBaETik5p4TrCyeyIVzR8vkAzRgpSVEJLQ__tVLHaJHSjkxQhEitZ-jxCjw0uXsDXEdWbz4KaxI4nKBPISb83uUWt91T--N0U7DLn9iHiO_XDDvI3-XQY5NxDGGPM-wHiCaPEU7QkTcvCRZ_PEcPN9ebelms1rd39eWqGCjluWg0F6wEUKZy3nAmPEhriQdPK2mp05LSRlveeMuUoWKyBOXc-Ep75nzD5-jsd3eI4XWElLe7MMZ-utxyojQnupKMfwGQcVXT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089309762</pqid></control><display><type>article</type><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</creator><creatorcontrib>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</creatorcontrib><description>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (&gt;30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03815k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acid rain ; Adsorption ; Charge transfer ; Density functional theory ; Energy charge ; First principles ; Functional groups ; Gas sensors ; Gases ; Magnetic properties ; MXenes ; Nanosheets ; Nitrogen dioxide ; Ozone depletion ; Room temperature ; Sensitivity analysis ; Sensors</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Guo, Liangchao</creatorcontrib><creatorcontrib>Han, Haoran</creatorcontrib><creatorcontrib>Wang, Junke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Yuan, Qilong</creatorcontrib><creatorcontrib>Zhai, Yongbiao</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (&gt;30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</description><subject>Acid rain</subject><subject>Adsorption</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Energy charge</subject><subject>First principles</subject><subject>Functional groups</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Magnetic properties</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Nitrogen dioxide</subject><subject>Ozone depletion</subject><subject>Room temperature</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9TclOwzAUtBBIVKUXvsAS54C3OPYRhaVIFb2UC5fKjp9JCo2D7bD8PWERc5nRaBaETik5p4TrCyeyIVzR8vkAzRgpSVEJLQ__tVLHaJHSjkxQhEitZ-jxCjw0uXsDXEdWbz4KaxI4nKBPISb83uUWt91T--N0U7DLn9iHiO_XDDvI3-XQY5NxDGGPM-wHiCaPEU7QkTcvCRZ_PEcPN9ebelms1rd39eWqGCjluWg0F6wEUKZy3nAmPEhriQdPK2mp05LSRlveeMuUoWKyBOXc-Ep75nzD5-jsd3eI4XWElLe7MMZ-utxyojQnupKMfwGQcVXT</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Guo, Liangchao</creator><creator>Han, Haoran</creator><creator>Wang, Junke</creator><creator>Wang, Peng</creator><creator>Du, Chunyu</creator><creator>Wang, Bo</creator><creator>Yuan, Qilong</creator><creator>Zhai, Yongbiao</creator><creator>Zhang, Chao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240806</creationdate><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><author>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-c93425ee8a7dfa324fe6bb0fef176b1d9611c9b3cfb28a14b1d4133af79f2dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid rain</topic><topic>Adsorption</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Energy charge</topic><topic>First principles</topic><topic>Functional groups</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Magnetic properties</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Nitrogen dioxide</topic><topic>Ozone depletion</topic><topic>Room temperature</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Liangchao</creatorcontrib><creatorcontrib>Han, Haoran</creatorcontrib><creatorcontrib>Wang, Junke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Yuan, Qilong</creatorcontrib><creatorcontrib>Zhai, Yongbiao</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Liangchao</au><au>Han, Haoran</au><au>Wang, Junke</au><au>Wang, Peng</au><au>Du, Chunyu</au><au>Wang, Bo</au><au>Yuan, Qilong</au><au>Zhai, Yongbiao</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><spage>20414</spage><epage>20424</epage><pages>20414-20424</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (&gt;30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta03815k</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3089309762
source Royal Society Of Chemistry Journals 2008-
subjects Acid rain
Adsorption
Charge transfer
Density functional theory
Energy charge
First principles
Functional groups
Gas sensors
Gases
Magnetic properties
MXenes
Nanosheets
Nitrogen dioxide
Ozone depletion
Room temperature
Sensitivity analysis
Sensors
title Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defective%20Cr2CTx-based%20sensors%20with%20high%20sensitivity%20for%20NO2%20detection%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Guo,%20Liangchao&rft.date=2024-08-06&rft.volume=12&rft.issue=31&rft.spage=20414&rft.epage=20424&rft.pages=20414-20424&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03815k&rft_dat=%3Cproquest%3E3089309762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089309762&rft_id=info:pmid/&rfr_iscdi=true