Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature
Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was us...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20424 |
---|---|
container_issue | 31 |
container_start_page | 20414 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Guo, Liangchao Han, Haoran Wang, Junke Wang, Peng Du, Chunyu Wang, Bo Yuan, Qilong Zhai, Yongbiao Zhang, Chao |
description | Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (>30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors. |
doi_str_mv | 10.1039/d4ta03815k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3089309762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089309762</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-c93425ee8a7dfa324fe6bb0fef176b1d9611c9b3cfb28a14b1d4133af79f2dfc3</originalsourceid><addsrcrecordid>eNo9TclOwzAUtBBIVKUXvsAS54C3OPYRhaVIFb2UC5fKjp9JCo2D7bD8PWERc5nRaBaETik5p4TrCyeyIVzR8vkAzRgpSVEJLQ__tVLHaJHSjkxQhEitZ-jxCjw0uXsDXEdWbz4KaxI4nKBPISb83uUWt91T--N0U7DLn9iHiO_XDDvI3-XQY5NxDGGPM-wHiCaPEU7QkTcvCRZ_PEcPN9ebelms1rd39eWqGCjluWg0F6wEUKZy3nAmPEhriQdPK2mp05LSRlveeMuUoWKyBOXc-Ep75nzD5-jsd3eI4XWElLe7MMZ-utxyojQnupKMfwGQcVXT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089309762</pqid></control><display><type>article</type><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</creator><creatorcontrib>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</creatorcontrib><description>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (>30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03815k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acid rain ; Adsorption ; Charge transfer ; Density functional theory ; Energy charge ; First principles ; Functional groups ; Gas sensors ; Gases ; Magnetic properties ; MXenes ; Nanosheets ; Nitrogen dioxide ; Ozone depletion ; Room temperature ; Sensitivity analysis ; Sensors</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Guo, Liangchao</creatorcontrib><creatorcontrib>Han, Haoran</creatorcontrib><creatorcontrib>Wang, Junke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Yuan, Qilong</creatorcontrib><creatorcontrib>Zhai, Yongbiao</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (>30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</description><subject>Acid rain</subject><subject>Adsorption</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Energy charge</subject><subject>First principles</subject><subject>Functional groups</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Magnetic properties</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Nitrogen dioxide</subject><subject>Ozone depletion</subject><subject>Room temperature</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9TclOwzAUtBBIVKUXvsAS54C3OPYRhaVIFb2UC5fKjp9JCo2D7bD8PWERc5nRaBaETik5p4TrCyeyIVzR8vkAzRgpSVEJLQ__tVLHaJHSjkxQhEitZ-jxCjw0uXsDXEdWbz4KaxI4nKBPISb83uUWt91T--N0U7DLn9iHiO_XDDvI3-XQY5NxDGGPM-wHiCaPEU7QkTcvCRZ_PEcPN9ebelms1rd39eWqGCjluWg0F6wEUKZy3nAmPEhriQdPK2mp05LSRlveeMuUoWKyBOXc-Ep75nzD5-jsd3eI4XWElLe7MMZ-utxyojQnupKMfwGQcVXT</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Guo, Liangchao</creator><creator>Han, Haoran</creator><creator>Wang, Junke</creator><creator>Wang, Peng</creator><creator>Du, Chunyu</creator><creator>Wang, Bo</creator><creator>Yuan, Qilong</creator><creator>Zhai, Yongbiao</creator><creator>Zhang, Chao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240806</creationdate><title>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</title><author>Guo, Liangchao ; Han, Haoran ; Wang, Junke ; Wang, Peng ; Du, Chunyu ; Wang, Bo ; Yuan, Qilong ; Zhai, Yongbiao ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-c93425ee8a7dfa324fe6bb0fef176b1d9611c9b3cfb28a14b1d4133af79f2dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid rain</topic><topic>Adsorption</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Energy charge</topic><topic>First principles</topic><topic>Functional groups</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Magnetic properties</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Nitrogen dioxide</topic><topic>Ozone depletion</topic><topic>Room temperature</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Liangchao</creatorcontrib><creatorcontrib>Han, Haoran</creatorcontrib><creatorcontrib>Wang, Junke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Yuan, Qilong</creatorcontrib><creatorcontrib>Zhai, Yongbiao</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Liangchao</au><au>Han, Haoran</au><au>Wang, Junke</au><au>Wang, Peng</au><au>Du, Chunyu</au><au>Wang, Bo</au><au>Yuan, Qilong</au><au>Zhai, Yongbiao</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><spage>20414</spage><epage>20424</epage><pages>20414-20424</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Nitrogen dioxide (NO2), a primary contributor to ozone depletion and acid rain, seriously threatens human health. However, the low response and slow dynamics derived from pristine MXenes remain a challenge to their real application in NO2 detection. In this work, a novel hydrothermal approach was used to generate defective MXene-Cr2CTx nanosheets with outstanding NO2 gas sensitivity, and first-principles calculations were used to analyze their gas sensing mechanism. The produced Cr2CTx nanosheets demonstrated rapid response/recovery durations (88 s/245 s), good selectivity, excellent stability, and durability (>30 days), and a high response rate (62.5%) to 10 ppm NO2 at room temperature (RT). Furthermore, Cr2CTx nanosheets demonstrated a detection limit for NO2 of less than 0.1 ppm. Utilizing density functional theory (DFT), the research explored the interplay between NO2 and Cr2CTx nanosheets, unveiling the impact of surface oxygen functional groups and magnetic properties on the material's gas adsorption capabilities. The adsorption energy (Eads) and Bader charge transfer measurements indicate that the Cr2CTx-based gas sensor exhibits a higher Eads (−0.53 eV) and Bader charge transfer (0.122 e) for NO2 compared to other gases, which are consistent with the experimental results. The research highlights the potential of Cr2CTx nanosheets in advancing the development of more effective and selective gas sensors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta03815k</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.20414-20424 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3089309762 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Acid rain Adsorption Charge transfer Density functional theory Energy charge First principles Functional groups Gas sensors Gases Magnetic properties MXenes Nanosheets Nitrogen dioxide Ozone depletion Room temperature Sensitivity analysis Sensors |
title | Defective Cr2CTx-based sensors with high sensitivity for NO2 detection at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defective%20Cr2CTx-based%20sensors%20with%20high%20sensitivity%20for%20NO2%20detection%20at%20room%20temperature&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Guo,%20Liangchao&rft.date=2024-08-06&rft.volume=12&rft.issue=31&rft.spage=20414&rft.epage=20424&rft.pages=20414-20424&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03815k&rft_dat=%3Cproquest%3E3089309762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089309762&rft_id=info:pmid/&rfr_iscdi=true |