Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications
The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic inte...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19949 |
---|---|
container_issue | 31 |
container_start_page | 19935 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Farithkhan, Ameer Gowthaman, N. S. K Kumar, Raju Suresh Alagumalai, Krishnapandi Chang, Wei Sea Meenakshi, Sankaran |
description | The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM
−1
cm
−2
accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm
−2
, which is 210 mV lower than that required for the standard alkaline water splitting reaction.
Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting. |
doi_str_mv | 10.1039/d4ta01919a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089309331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089309331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</originalsourceid><addsrcrecordid>eNpFkVFLHDEQxxexoFhf-l4I9E3YNjG7e5vH49Qq2FpQn5fZ7OSI3UvWmSzi1-onNHcnNi8zDL_8QuZfFF-U_K6kNj-GKoFURhk4KI7PZS3LRWWaw4--bY-KU-YnmU8rZWPMcfHvl7cUOdFs00wwCgiDwBFtohiEI9jgS6S_JYa1D4iEg9AX4re_xz-lDwnXBCnPVvMVChs3U2SfkAWwSOTdHGzyMWTtu9JCgvGVEwsXSTAG9mG9e3MmhBKYPW99L9lKJU-jT2lHTLnNl7OMPxefHIyMp-_1pHi8unxYXZe3dz9vVsvb0qqFTKW10jVaVRrA1r1zfS2t67WxdYtYawf90A8VnDutmrwPs9DVANbJtoF2wErpk-Lb3jtRfJ6RU_cUZ8qf4U5nXkuj9ZY621PbNTKh6ybyG6DXTsluG0t3UT0sd7EsM_x1DxPbD-5_bPoNL1CQMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089309331</pqid></control><display><type>article</type><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</creator><creatorcontrib>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</creatorcontrib><description>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM
−1
cm
−2
accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm
−2
, which is 210 mV lower than that required for the standard alkaline water splitting reaction.
Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta01919a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkaline water ; Channeling ; Cubes ; Electrocatalysts ; Electrodes ; Electrolysis ; Synergistic effect ; Three dimensional composites ; Urea ; Ureas ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</cites><orcidid>0000-0003-3754-4223 ; 0000-0001-6363-0147 ; 0000-0001-8232-2393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Farithkhan, Ameer</creatorcontrib><creatorcontrib>Gowthaman, N. S. K</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Alagumalai, Krishnapandi</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Meenakshi, Sankaran</creatorcontrib><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM
−1
cm
−2
accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm
−2
, which is 210 mV lower than that required for the standard alkaline water splitting reaction.
Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</description><subject>Alkaline water</subject><subject>Channeling</subject><subject>Cubes</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Synergistic effect</subject><subject>Three dimensional composites</subject><subject>Urea</subject><subject>Ureas</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkVFLHDEQxxexoFhf-l4I9E3YNjG7e5vH49Qq2FpQn5fZ7OSI3UvWmSzi1-onNHcnNi8zDL_8QuZfFF-U_K6kNj-GKoFURhk4KI7PZS3LRWWaw4--bY-KU-YnmU8rZWPMcfHvl7cUOdFs00wwCgiDwBFtohiEI9jgS6S_JYa1D4iEg9AX4re_xz-lDwnXBCnPVvMVChs3U2SfkAWwSOTdHGzyMWTtu9JCgvGVEwsXSTAG9mG9e3MmhBKYPW99L9lKJU-jT2lHTLnNl7OMPxefHIyMp-_1pHi8unxYXZe3dz9vVsvb0qqFTKW10jVaVRrA1r1zfS2t67WxdYtYawf90A8VnDutmrwPs9DVANbJtoF2wErpk-Lb3jtRfJ6RU_cUZ8qf4U5nXkuj9ZY621PbNTKh6ybyG6DXTsluG0t3UT0sd7EsM_x1DxPbD-5_bPoNL1CQMQ</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Farithkhan, Ameer</creator><creator>Gowthaman, N. S. K</creator><creator>Kumar, Raju Suresh</creator><creator>Alagumalai, Krishnapandi</creator><creator>Chang, Wei Sea</creator><creator>Meenakshi, Sankaran</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3754-4223</orcidid><orcidid>https://orcid.org/0000-0001-6363-0147</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid></search><sort><creationdate>20240806</creationdate><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><author>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline water</topic><topic>Channeling</topic><topic>Cubes</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Synergistic effect</topic><topic>Three dimensional composites</topic><topic>Urea</topic><topic>Ureas</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farithkhan, Ameer</creatorcontrib><creatorcontrib>Gowthaman, N. S. K</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Alagumalai, Krishnapandi</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Meenakshi, Sankaran</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farithkhan, Ameer</au><au>Gowthaman, N. S. K</au><au>Kumar, Raju Suresh</au><au>Alagumalai, Krishnapandi</au><au>Chang, Wei Sea</au><au>Meenakshi, Sankaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><spage>19935</spage><epage>19949</epage><pages>19935-19949</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM
−1
cm
−2
accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm
−2
, which is 210 mV lower than that required for the standard alkaline water splitting reaction.
Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta01919a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3754-4223</orcidid><orcidid>https://orcid.org/0000-0001-6363-0147</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3089309331 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alkaline water Channeling Cubes Electrocatalysts Electrodes Electrolysis Synergistic effect Three dimensional composites Urea Ureas Water splitting |
title | Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20electron%20framework-engineered%203D%20NiSeP-integrated%20CuFe%20composites%20as%20trifunctional%20electrocatalysts%20for%20sensing%20and%20urea-assisted%20water-splitting%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Farithkhan,%20Ameer&rft.date=2024-08-06&rft.volume=12&rft.issue=31&rft.spage=19935&rft.epage=19949&rft.pages=19935-19949&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta01919a&rft_dat=%3Cproquest_cross%3E3089309331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089309331&rft_id=info:pmid/&rfr_iscdi=true |