Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications

The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949
Hauptverfasser: Farithkhan, Ameer, Gowthaman, N. S. K, Kumar, Raju Suresh, Alagumalai, Krishnapandi, Chang, Wei Sea, Meenakshi, Sankaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19949
container_issue 31
container_start_page 19935
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Farithkhan, Ameer
Gowthaman, N. S. K
Kumar, Raju Suresh
Alagumalai, Krishnapandi
Chang, Wei Sea
Meenakshi, Sankaran
description The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM −1 cm −2 accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm −2 , which is 210 mV lower than that required for the standard alkaline water splitting reaction. Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.
doi_str_mv 10.1039/d4ta01919a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089309331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089309331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</originalsourceid><addsrcrecordid>eNpFkVFLHDEQxxexoFhf-l4I9E3YNjG7e5vH49Qq2FpQn5fZ7OSI3UvWmSzi1-onNHcnNi8zDL_8QuZfFF-U_K6kNj-GKoFURhk4KI7PZS3LRWWaw4--bY-KU-YnmU8rZWPMcfHvl7cUOdFs00wwCgiDwBFtohiEI9jgS6S_JYa1D4iEg9AX4re_xz-lDwnXBCnPVvMVChs3U2SfkAWwSOTdHGzyMWTtu9JCgvGVEwsXSTAG9mG9e3MmhBKYPW99L9lKJU-jT2lHTLnNl7OMPxefHIyMp-_1pHi8unxYXZe3dz9vVsvb0qqFTKW10jVaVRrA1r1zfS2t67WxdYtYawf90A8VnDutmrwPs9DVANbJtoF2wErpk-Lb3jtRfJ6RU_cUZ8qf4U5nXkuj9ZY621PbNTKh6ybyG6DXTsluG0t3UT0sd7EsM_x1DxPbD-5_bPoNL1CQMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089309331</pqid></control><display><type>article</type><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</creator><creatorcontrib>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</creatorcontrib><description>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM −1 cm −2 accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm −2 , which is 210 mV lower than that required for the standard alkaline water splitting reaction. Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta01919a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkaline water ; Channeling ; Cubes ; Electrocatalysts ; Electrodes ; Electrolysis ; Synergistic effect ; Three dimensional composites ; Urea ; Ureas ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</cites><orcidid>0000-0003-3754-4223 ; 0000-0001-6363-0147 ; 0000-0001-8232-2393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Farithkhan, Ameer</creatorcontrib><creatorcontrib>Gowthaman, N. S. K</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Alagumalai, Krishnapandi</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Meenakshi, Sankaran</creatorcontrib><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM −1 cm −2 accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm −2 , which is 210 mV lower than that required for the standard alkaline water splitting reaction. Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</description><subject>Alkaline water</subject><subject>Channeling</subject><subject>Cubes</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Synergistic effect</subject><subject>Three dimensional composites</subject><subject>Urea</subject><subject>Ureas</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkVFLHDEQxxexoFhf-l4I9E3YNjG7e5vH49Qq2FpQn5fZ7OSI3UvWmSzi1-onNHcnNi8zDL_8QuZfFF-U_K6kNj-GKoFURhk4KI7PZS3LRWWaw4--bY-KU-YnmU8rZWPMcfHvl7cUOdFs00wwCgiDwBFtohiEI9jgS6S_JYa1D4iEg9AX4re_xz-lDwnXBCnPVvMVChs3U2SfkAWwSOTdHGzyMWTtu9JCgvGVEwsXSTAG9mG9e3MmhBKYPW99L9lKJU-jT2lHTLnNl7OMPxefHIyMp-_1pHi8unxYXZe3dz9vVsvb0qqFTKW10jVaVRrA1r1zfS2t67WxdYtYawf90A8VnDutmrwPs9DVANbJtoF2wErpk-Lb3jtRfJ6RU_cUZ8qf4U5nXkuj9ZY621PbNTKh6ybyG6DXTsluG0t3UT0sd7EsM_x1DxPbD-5_bPoNL1CQMQ</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Farithkhan, Ameer</creator><creator>Gowthaman, N. S. K</creator><creator>Kumar, Raju Suresh</creator><creator>Alagumalai, Krishnapandi</creator><creator>Chang, Wei Sea</creator><creator>Meenakshi, Sankaran</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3754-4223</orcidid><orcidid>https://orcid.org/0000-0001-6363-0147</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid></search><sort><creationdate>20240806</creationdate><title>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</title><author>Farithkhan, Ameer ; Gowthaman, N. S. K ; Kumar, Raju Suresh ; Alagumalai, Krishnapandi ; Chang, Wei Sea ; Meenakshi, Sankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-cc0f63143aac5bffb50cfb39c58ee53fabdbd4a2f3160089734dacf086a8de413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline water</topic><topic>Channeling</topic><topic>Cubes</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Synergistic effect</topic><topic>Three dimensional composites</topic><topic>Urea</topic><topic>Ureas</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farithkhan, Ameer</creatorcontrib><creatorcontrib>Gowthaman, N. S. K</creatorcontrib><creatorcontrib>Kumar, Raju Suresh</creatorcontrib><creatorcontrib>Alagumalai, Krishnapandi</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Meenakshi, Sankaran</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farithkhan, Ameer</au><au>Gowthaman, N. S. K</au><au>Kumar, Raju Suresh</au><au>Alagumalai, Krishnapandi</au><au>Chang, Wei Sea</au><au>Meenakshi, Sankaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><spage>19935</spage><epage>19949</epage><pages>19935-19949</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of catalytically dynamic, self-supporting, and cost-effective electrodes equipped with efficient trifunctional catalytic microarchitectures is pivotal in addressing the emerging demands of the healthcare and energy sectors. For the first time, this research reports the strategic integration of three-dimensional Se and P-fused NiSeP (NSP) microflakes with CuFe (CF) composite cubes anchored over an inherently capacious nitrogen-doped carbonized wood (NCW) (NSP-CF@NCW) and explores the impact of diverse strategies of electron and microstructural engineering of electrocatalytic sites on the trifunctional performances for enzyme-free urea sensing and urea electrolysis. Among the array of built electrodes, the NSP-CF@NCW electrode exhibits excellent multifaceted electrocatalysis ability triggered by the synergistic effects of highly voluminous and interconnected NSP flakes anchored over the CF composite, which results in unique electron channeling for efficient electrocatalytic kinetics. The NSP-CF@NCW electrode as a urea sensor exhibits momentous sensitivities of 33.1 and 7.0 mA mM −1 cm −2 accompanied with the corresponding broad linear ranges of 0.01-0.5 mM and 0.5-9.0 mM, respectively, and a detection limit of 0.0085 mM (S/N = 3). Moreover, as a urea electrolyzer, the best-performing electrode requires an overpotential of 1.49 V to deliver a high current density of 50 mA cm −2 , which is 210 mV lower than that required for the standard alkaline water splitting reaction. Catalytically dynamic NSP-CF@NCW electrode engineered by strategic integration of 3D Se and P-fused NSP microflakes with CF cubes docked NCW was studied as a trifunctional electrocatalyst for urea sensing and urea-assisted water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta01919a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3754-4223</orcidid><orcidid>https://orcid.org/0000-0001-6363-0147</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (31), p.19935-19949
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3089309331
source Royal Society Of Chemistry Journals 2008-
subjects Alkaline water
Channeling
Cubes
Electrocatalysts
Electrodes
Electrolysis
Synergistic effect
Three dimensional composites
Urea
Ureas
Water splitting
title Microstructural and electron framework-engineered 3D NiSeP-integrated CuFe composites as trifunctional electrocatalysts for sensing and urea-assisted water-splitting applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20electron%20framework-engineered%203D%20NiSeP-integrated%20CuFe%20composites%20as%20trifunctional%20electrocatalysts%20for%20sensing%20and%20urea-assisted%20water-splitting%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Farithkhan,%20Ameer&rft.date=2024-08-06&rft.volume=12&rft.issue=31&rft.spage=19935&rft.epage=19949&rft.pages=19935-19949&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta01919a&rft_dat=%3Cproquest_cross%3E3089309331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089309331&rft_id=info:pmid/&rfr_iscdi=true