Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well

In this study, we thoroughly investigate the impacts of hydrostatic pressure, temperature, and position-dependent mass (PDM) on the nonlinear optical properties of asymmetric triple δ -doped GaAs quantum wells. Our analysis covers total optical absorption coefficients, relative refractive index chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2024-08, Vol.139 (8), p.690, Article 690
Hauptverfasser: Tuzemen, A. Turker, Al, E. B., Sayrac, H., Dakhlaoui, H., Mora-Ramos, M. E., Ungan, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 690
container_title European physical journal plus
container_volume 139
creator Tuzemen, A. Turker
Al, E. B.
Sayrac, H.
Dakhlaoui, H.
Mora-Ramos, M. E.
Ungan, F.
description In this study, we thoroughly investigate the impacts of hydrostatic pressure, temperature, and position-dependent mass (PDM) on the nonlinear optical properties of asymmetric triple δ -doped GaAs quantum wells. Our analysis covers total optical absorption coefficients, relative refractive index changes, nonlinear optical rectification, second harmonic generation, and third harmonic generation. Initially, we employ PDM to solve the time-independent Schrödinger equation using the diagonalization method under effective mass and parabolic band approaches, considering pressure and temperature dependencies. Utilizing the first four energy eigenvalues and eigenfunctions, we apply the compact density matrix method to compute the system’s nonlinear optical properties numerically. The results indicate a shift in optical property peak positions toward lower (higher) energy spectra with increasing hydrostatic pressure (temperature). Furthermore, the influence of PDM shifts the system’s optical properties toward the higher energy spectrum, resembling the effect of temperature. From an experimental and theoretical perspective, one of the topics that researchers work on most is GaAs-based δ -doped systems ( δ -doped heterojunction bipolar transistors, δ -doped field effect transistors, δ -multiple independent gate field effect transistors, etc.). We believe these findings will provide valuable insights for the researchers involved in GaAs-based δ -doped optoelectronic device design.
doi_str_mv 10.1140/epjp/s13360-024-05490-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3089061137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089061137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-b8c9569cc63fe050d48280b6ceb40907cc7d7feb809877952c4e69836282698d3</originalsourceid><addsrcrecordid>eNqFkVFPwyAQxxujiYvuM0jiq3XQ0hYel2VOkyW-6DOhcHVdWsqAxuyD-H1lq4m-ycsdx_1_R-6fJHcEPxJC8QLs3i48yfMSpzijKS4oxym7SGYZiUlBKb38k18nc-_3OB7KCeV0lnytmwZU8Gho0O6o3eCDDK1C1oH3o4MHFKC34GQ4X6TRyA6-De1gUg0WjAYTUC99JBgUdoDMYLrWgHRosJEku8gaIiG0cJ4SXGs7QBq6IFMdXzTayKVHh1GaMPboE7ruNrlqZOdh_hNvkven9dvqOd2-bl5Wy22qMoZDWjPFi5IrVeYN4AJrymK9LhXUFHNcKVXpqoGaYc6qiheZolBylpcZy2LU-U1yP3HjFw8j-CD2w-hMHClyzDguCcmr2FVNXSquxztohHVtL91RECxONoiTDWKyQUQbxNkGwaKSTUofFeYD3C__P-k3CjqRXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089061137</pqid></control><display><type>article</type><title>Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well</title><source>SpringerLink Journals</source><creator>Tuzemen, A. Turker ; Al, E. B. ; Sayrac, H. ; Dakhlaoui, H. ; Mora-Ramos, M. E. ; Ungan, F.</creator><creatorcontrib>Tuzemen, A. Turker ; Al, E. B. ; Sayrac, H. ; Dakhlaoui, H. ; Mora-Ramos, M. E. ; Ungan, F.</creatorcontrib><description>In this study, we thoroughly investigate the impacts of hydrostatic pressure, temperature, and position-dependent mass (PDM) on the nonlinear optical properties of asymmetric triple δ -doped GaAs quantum wells. Our analysis covers total optical absorption coefficients, relative refractive index changes, nonlinear optical rectification, second harmonic generation, and third harmonic generation. Initially, we employ PDM to solve the time-independent Schrödinger equation using the diagonalization method under effective mass and parabolic band approaches, considering pressure and temperature dependencies. Utilizing the first four energy eigenvalues and eigenfunctions, we apply the compact density matrix method to compute the system’s nonlinear optical properties numerically. The results indicate a shift in optical property peak positions toward lower (higher) energy spectra with increasing hydrostatic pressure (temperature). Furthermore, the influence of PDM shifts the system’s optical properties toward the higher energy spectrum, resembling the effect of temperature. From an experimental and theoretical perspective, one of the topics that researchers work on most is GaAs-based δ -doped systems ( δ -doped heterojunction bipolar transistors, δ -doped field effect transistors, δ -multiple independent gate field effect transistors, etc.). We believe these findings will provide valuable insights for the researchers involved in GaAs-based δ -doped optoelectronic device design.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-024-05490-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorptivity ; Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Eigenvectors ; Energy ; Energy spectra ; Field effect transistors ; Gallium arsenide ; Heterojunction bipolar transistors ; Hydrostatic pressure ; Mathematical and Computational Physics ; Matrix methods ; Molecular ; Molecular beam epitaxy ; Nonlinear optics ; Optical and Plasma Physics ; Optical properties ; Optoelectronic devices ; Physics ; Physics and Astronomy ; Pressure dependence ; Pressure effects ; Quantum wells ; Refractivity ; Regular Article ; Schrodinger equation ; Second harmonic generation ; Semiconductor devices ; Temperature dependence ; Temperature effects ; Theoretical</subject><ispartof>European physical journal plus, 2024-08, Vol.139 (8), p.690, Article 690</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-b8c9569cc63fe050d48280b6ceb40907cc7d7feb809877952c4e69836282698d3</cites><orcidid>0000-0003-3533-4150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05490-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjp/s13360-024-05490-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tuzemen, A. Turker</creatorcontrib><creatorcontrib>Al, E. B.</creatorcontrib><creatorcontrib>Sayrac, H.</creatorcontrib><creatorcontrib>Dakhlaoui, H.</creatorcontrib><creatorcontrib>Mora-Ramos, M. E.</creatorcontrib><creatorcontrib>Ungan, F.</creatorcontrib><title>Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this study, we thoroughly investigate the impacts of hydrostatic pressure, temperature, and position-dependent mass (PDM) on the nonlinear optical properties of asymmetric triple δ -doped GaAs quantum wells. Our analysis covers total optical absorption coefficients, relative refractive index changes, nonlinear optical rectification, second harmonic generation, and third harmonic generation. Initially, we employ PDM to solve the time-independent Schrödinger equation using the diagonalization method under effective mass and parabolic band approaches, considering pressure and temperature dependencies. Utilizing the first four energy eigenvalues and eigenfunctions, we apply the compact density matrix method to compute the system’s nonlinear optical properties numerically. The results indicate a shift in optical property peak positions toward lower (higher) energy spectra with increasing hydrostatic pressure (temperature). Furthermore, the influence of PDM shifts the system’s optical properties toward the higher energy spectrum, resembling the effect of temperature. From an experimental and theoretical perspective, one of the topics that researchers work on most is GaAs-based δ -doped systems ( δ -doped heterojunction bipolar transistors, δ -doped field effect transistors, δ -multiple independent gate field effect transistors, etc.). We believe these findings will provide valuable insights for the researchers involved in GaAs-based δ -doped optoelectronic device design.</description><subject>Absorptivity</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy</subject><subject>Energy spectra</subject><subject>Field effect transistors</subject><subject>Gallium arsenide</subject><subject>Heterojunction bipolar transistors</subject><subject>Hydrostatic pressure</subject><subject>Mathematical and Computational Physics</subject><subject>Matrix methods</subject><subject>Molecular</subject><subject>Molecular beam epitaxy</subject><subject>Nonlinear optics</subject><subject>Optical and Plasma Physics</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure dependence</subject><subject>Pressure effects</subject><subject>Quantum wells</subject><subject>Refractivity</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Second harmonic generation</subject><subject>Semiconductor devices</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkVFPwyAQxxujiYvuM0jiq3XQ0hYel2VOkyW-6DOhcHVdWsqAxuyD-H1lq4m-ycsdx_1_R-6fJHcEPxJC8QLs3i48yfMSpzijKS4oxym7SGYZiUlBKb38k18nc-_3OB7KCeV0lnytmwZU8Gho0O6o3eCDDK1C1oH3o4MHFKC34GQ4X6TRyA6-De1gUg0WjAYTUC99JBgUdoDMYLrWgHRosJEku8gaIiG0cJ4SXGs7QBq6IFMdXzTayKVHh1GaMPboE7ruNrlqZOdh_hNvkven9dvqOd2-bl5Wy22qMoZDWjPFi5IrVeYN4AJrymK9LhXUFHNcKVXpqoGaYc6qiheZolBylpcZy2LU-U1yP3HjFw8j-CD2w-hMHClyzDguCcmr2FVNXSquxztohHVtL91RECxONoiTDWKyQUQbxNkGwaKSTUofFeYD3C__P-k3CjqRXw</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Tuzemen, A. Turker</creator><creator>Al, E. B.</creator><creator>Sayrac, H.</creator><creator>Dakhlaoui, H.</creator><creator>Mora-Ramos, M. E.</creator><creator>Ungan, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3533-4150</orcidid></search><sort><creationdate>20240805</creationdate><title>Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well</title><author>Tuzemen, A. Turker ; Al, E. B. ; Sayrac, H. ; Dakhlaoui, H. ; Mora-Ramos, M. E. ; Ungan, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-b8c9569cc63fe050d48280b6ceb40907cc7d7feb809877952c4e69836282698d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy</topic><topic>Energy spectra</topic><topic>Field effect transistors</topic><topic>Gallium arsenide</topic><topic>Heterojunction bipolar transistors</topic><topic>Hydrostatic pressure</topic><topic>Mathematical and Computational Physics</topic><topic>Matrix methods</topic><topic>Molecular</topic><topic>Molecular beam epitaxy</topic><topic>Nonlinear optics</topic><topic>Optical and Plasma Physics</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure dependence</topic><topic>Pressure effects</topic><topic>Quantum wells</topic><topic>Refractivity</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Second harmonic generation</topic><topic>Semiconductor devices</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuzemen, A. Turker</creatorcontrib><creatorcontrib>Al, E. B.</creatorcontrib><creatorcontrib>Sayrac, H.</creatorcontrib><creatorcontrib>Dakhlaoui, H.</creatorcontrib><creatorcontrib>Mora-Ramos, M. E.</creatorcontrib><creatorcontrib>Ungan, F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuzemen, A. Turker</au><au>Al, E. B.</au><au>Sayrac, H.</au><au>Dakhlaoui, H.</au><au>Mora-Ramos, M. E.</au><au>Ungan, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2024-08-05</date><risdate>2024</risdate><volume>139</volume><issue>8</issue><spage>690</spage><pages>690-</pages><artnum>690</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this study, we thoroughly investigate the impacts of hydrostatic pressure, temperature, and position-dependent mass (PDM) on the nonlinear optical properties of asymmetric triple δ -doped GaAs quantum wells. Our analysis covers total optical absorption coefficients, relative refractive index changes, nonlinear optical rectification, second harmonic generation, and third harmonic generation. Initially, we employ PDM to solve the time-independent Schrödinger equation using the diagonalization method under effective mass and parabolic band approaches, considering pressure and temperature dependencies. Utilizing the first four energy eigenvalues and eigenfunctions, we apply the compact density matrix method to compute the system’s nonlinear optical properties numerically. The results indicate a shift in optical property peak positions toward lower (higher) energy spectra with increasing hydrostatic pressure (temperature). Furthermore, the influence of PDM shifts the system’s optical properties toward the higher energy spectrum, resembling the effect of temperature. From an experimental and theoretical perspective, one of the topics that researchers work on most is GaAs-based δ -doped systems ( δ -doped heterojunction bipolar transistors, δ -doped field effect transistors, δ -multiple independent gate field effect transistors, etc.). We believe these findings will provide valuable insights for the researchers involved in GaAs-based δ -doped optoelectronic device design.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-024-05490-8</doi><orcidid>https://orcid.org/0000-0003-3533-4150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2024-08, Vol.139 (8), p.690, Article 690
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_3089061137
source SpringerLink Journals
subjects Absorptivity
Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvalues
Eigenvectors
Energy
Energy spectra
Field effect transistors
Gallium arsenide
Heterojunction bipolar transistors
Hydrostatic pressure
Mathematical and Computational Physics
Matrix methods
Molecular
Molecular beam epitaxy
Nonlinear optics
Optical and Plasma Physics
Optical properties
Optoelectronic devices
Physics
Physics and Astronomy
Pressure dependence
Pressure effects
Quantum wells
Refractivity
Regular Article
Schrodinger equation
Second harmonic generation
Semiconductor devices
Temperature dependence
Temperature effects
Theoretical
title Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20hydrostatic%20pressure,%20temperature,%20and%20position-dependent%20mass%20on%20the%20nonlinear%20optical%20properties%20of%20triple%20delta-doped%20GaAs%20quantum%20well&rft.jtitle=European%20physical%20journal%20plus&rft.au=Tuzemen,%20A.%20Turker&rft.date=2024-08-05&rft.volume=139&rft.issue=8&rft.spage=690&rft.pages=690-&rft.artnum=690&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-024-05490-8&rft_dat=%3Cproquest_cross%3E3089061137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089061137&rft_id=info:pmid/&rfr_iscdi=true