Leveraging LLM Reasoning Enhances Personalized Recommender Systems
Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM r...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tsai, Alicia Y Kraft, Adam Long, Jin Cai, Chenwei Hosseini, Anahita Xu, Taibai Zhang, Zemin Hong, Lichan Chi, Ed H Yi, Xinyang |
description | Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3088983642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3088983642</sourcerecordid><originalsourceid>FETCH-proquest_journals_30889836423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8kktSy1KTM_MS1fw8fFVCEpNLM7PA_Fc8zIS85JTixUCUouAQok5mVWpKUD55Pzc3NS8lNQiheDK4pLU3GIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0oDje2MDCwtLC2MzEyJg4VQC5CTn6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088983642</pqid></control><display><type>article</type><title>Leveraging LLM Reasoning Enhances Personalized Recommender Systems</title><source>Free E- Journals</source><creator>Tsai, Alicia Y ; Kraft, Adam ; Long, Jin ; Cai, Chenwei ; Hosseini, Anahita ; Xu, Taibai ; Zhang, Zemin ; Hong, Lichan ; Chi, Ed H ; Yi, Xinyang</creator><creatorcontrib>Tsai, Alicia Y ; Kraft, Adam ; Long, Jin ; Cai, Chenwei ; Hosseini, Anahita ; Xu, Taibai ; Zhang, Zemin ; Hong, Lichan ; Chi, Ed H ; Yi, Xinyang</creatorcontrib><description>Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Large language models ; Reasoning ; Recommender systems</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tsai, Alicia Y</creatorcontrib><creatorcontrib>Kraft, Adam</creatorcontrib><creatorcontrib>Long, Jin</creatorcontrib><creatorcontrib>Cai, Chenwei</creatorcontrib><creatorcontrib>Hosseini, Anahita</creatorcontrib><creatorcontrib>Xu, Taibai</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Hong, Lichan</creatorcontrib><creatorcontrib>Chi, Ed H</creatorcontrib><creatorcontrib>Yi, Xinyang</creatorcontrib><title>Leveraging LLM Reasoning Enhances Personalized Recommender Systems</title><title>arXiv.org</title><description>Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies.</description><subject>Customization</subject><subject>Large language models</subject><subject>Reasoning</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8kktSy1KTM_MS1fw8fFVCEpNLM7PA_Fc8zIS85JTixUCUouAQok5mVWpKUD55Pzc3NS8lNQiheDK4pLU3GIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0oDje2MDCwtLC2MzEyJg4VQC5CTn6</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Tsai, Alicia Y</creator><creator>Kraft, Adam</creator><creator>Long, Jin</creator><creator>Cai, Chenwei</creator><creator>Hosseini, Anahita</creator><creator>Xu, Taibai</creator><creator>Zhang, Zemin</creator><creator>Hong, Lichan</creator><creator>Chi, Ed H</creator><creator>Yi, Xinyang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240722</creationdate><title>Leveraging LLM Reasoning Enhances Personalized Recommender Systems</title><author>Tsai, Alicia Y ; Kraft, Adam ; Long, Jin ; Cai, Chenwei ; Hosseini, Anahita ; Xu, Taibai ; Zhang, Zemin ; Hong, Lichan ; Chi, Ed H ; Yi, Xinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30889836423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Customization</topic><topic>Large language models</topic><topic>Reasoning</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Alicia Y</creatorcontrib><creatorcontrib>Kraft, Adam</creatorcontrib><creatorcontrib>Long, Jin</creatorcontrib><creatorcontrib>Cai, Chenwei</creatorcontrib><creatorcontrib>Hosseini, Anahita</creatorcontrib><creatorcontrib>Xu, Taibai</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Hong, Lichan</creatorcontrib><creatorcontrib>Chi, Ed H</creatorcontrib><creatorcontrib>Yi, Xinyang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Alicia Y</au><au>Kraft, Adam</au><au>Long, Jin</au><au>Cai, Chenwei</au><au>Hosseini, Anahita</au><au>Xu, Taibai</au><au>Zhang, Zemin</au><au>Hong, Lichan</au><au>Chi, Ed H</au><au>Yi, Xinyang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging LLM Reasoning Enhances Personalized Recommender Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-07-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3088983642 |
source | Free E- Journals |
subjects | Customization Large language models Reasoning Recommender systems |
title | Leveraging LLM Reasoning Enhances Personalized Recommender Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20LLM%20Reasoning%20Enhances%20Personalized%20Recommender%20Systems&rft.jtitle=arXiv.org&rft.au=Tsai,%20Alicia%20Y&rft.date=2024-07-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3088983642%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3088983642&rft_id=info:pmid/&rfr_iscdi=true |